Custom backends and renderers need to implement
wlr_backend_impl.get_buffer_caps and
wlr_renderer_impl.get_render_buffer_caps. They can't if enum
wlr_buffer_cap isn't made public.
We never create an EGL context with the platform set to something
other than EGL_PLATFORM_GBM_KHR. Let's simplify wlr_egl_create by
taking a DRM FD instead of a (platform, remote_display) tuple.
This hides the internal details of creating an EGL context for a
specific device. This will allow us to transparently use the device
platform [1] when the time comes.
[1]: https://github.com/swaywm/wlroots/pull/2671
The wlr_egl functions are mostly used internally by the GLES2
renderer. Let's reduce our API surface a bit by hiding them. If
there are good use-cases for one of these, we can always make them
public again.
The functions mutating the current EGL context are not made private
because e.g. Wayfire uses them.
Add wlr_pixman_buffer_get_current_image for wlr_pixman_renderer.
Add wlr_gles2_buffer_get_current_fbo for wlr_gles2_renderer.
Allow get the FBO/pixman_image_t, the compositor can be add some
action for FBO(for eg, attach a depth buffer), or without pixman
render to pixman_image_t(for eg, use QPainter of Qt instead of pixman).
The types of buffers supported by the renderer might depend on the
renderer's instance. For instance, a renderer might only support
DMA-BUFs if the necessary EGL extensions are available.
Pass the wlr_renderer to get_buffer_caps so that the renderer can
perform such checks.
Fixes: 982498fab3 ("render: introduce renderer_get_render_buffer_caps")
When importing a DMA-BUF wlr_buffer as a wlr_texture, the GLES2
renderer caches the result, in case the buffer is used for texturing
again in the future. When the wlr_texture is destroyed by the caller,
the wlr_buffer is unref'ed, but the wlr_gles2_texture is kept around.
This is fine because wlr_gles2_texture listens for wlr_buffer's destroy
event to avoid any use-after-free.
However, with this logic wlr_texture_destroy doesn't "really" destroy
the wlr_gles2_texture. It just decrements the wlr_buffer ref'count.
Each wlr_texture_destroy call must have a matching prior
wlr_texture_create_from_buffer call or the ref'counting will go south.
Wehn destroying the renderer, we don't want to decrement any wlr_buffer
ref'count. Instead, we want to go through any cached wlr_gles2_texture
and destroy our GL state. So instead of calling wlr_texture_destroy, we
need to call our internal gles2_texture_destroy function.
Closes: https://github.com/swaywm/wlroots/issues/2941
Make it so wlr_gles2_texture is ref'counted (via wlr_buffer). This
is similar to wlr_gles2_buffer or wlr_drm_fb work.
When creating a wlr_texture from a wlr_buffer, first check if we
already have a texture for the buffer. If so, increase the
wlr_buffer ref'count and make sure any changes made by an external
process are made visible (by invalidating the texture).
When destroying a wlr_texture created from a wlr_buffer, decrease
the ref'count, but keep the wlr_texture around in case the caller
uses it again. When the wlr_buffer is destroyed, cleanup the
wlr_texture.
Make it clear GLES2 is being used. Before this commit, various
GL-related information was printed, but not an easy-to-find line
about which renderer is being picked up.
PRIME support for buffer sharing has become mandatory since the renderer
rewrite. Make sure we check for the appropriate capabilities in backend,
allocator and renderer.
See also #2819.
Compute only the transform matrix in the output. The projection matrix
will be calculated inside the gles2 renderer when we start rendering.
The goal is to help the pixman rendering process.
Instead of requiring callers to manually make the EGL context current
before binding a buffer and unsetting it after unbinding a buffer, do
it inside wlr_renderer_bind_buffer.
This hides renderer-specific implementation details inside the
wlr_renderer interface. Non-GLES2 renderers may not use EGL.
This removes all EGL dependencies from the backends.
References: https://github.com/swaywm/wlroots/issues/2618
References: https://github.com/swaywm/wlroots/pull/2615#issuecomment-756687006
It can be surprising that destroying a buffer changes the EGL context,
especially since this can be triggered from anywhere wlr_buffer_unlock
is called.
Prevent this from happening by saving and restoring the EGL context.
Rename wlr_renderer_get_dmabuf_formats to
wlr_renderer_get_dmabuf_texture_formats. This makes it clear the formats
are only suitable for creating wlr_textures.
This leaves an EGL context current behind. wlr_gles2_renderer_create was
assuming the EGL context was already current because of this (because it
called a GL function right off the bat).
This function can be called after wlr_egl_make_current to cleanup the
EGL context. This avoids having lingering EGL contexts that make things
work by chance.
Closes: https://github.com/swaywm/wlroots/issues/2197
This makes it easier for the user of this library to properly handle
failure of this function.
The signature of wlr_renderer_impl.init_wl_display was also modified to
allow for proper error propagation.
Remove glapi.sh code generation, replace it with hand-written loading
code that checks extension strings before calling eglGetProcAddress.
The GLES2 renderer still uses global state because of:
- {PUSH,POP}_GLES2_DEBUG macros
- wlr_gles2_texture_from_* taking a wlr_egl instead of the renderer
We don't need our own enum for types. Instead we just use
GL_TEXTURE_{2D,EXTERNAL_OES}, which already describes usage.
Also fixes a situation where we were using GL_TEXTURE_2D in a situation
we should not have. wl_drm buffers are always GL_TEXTURE_EXTERNAL_OES,
no matter if they're RGB or any other format.
We were assuming GL_BGRA_EXT was always supported.
We now check that it's supported for rendering. We fail if it isn't because
this format is specified as "always supported" by the Wayland protocol.
We also check if it's supported for reading pixels. A new preferred_read_format
function returns the preferred format that can be used to read pixels. This is
used by the screencopy protocol.
../render/gles2/renderer.c: In function ‘gles2_render_texture_with_matrix’:
../render/gles2/renderer.c:140:2: error: ‘target’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
glBindTexture(target, tex_id);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../render/gles2/renderer.c:145:2: error: ‘prog’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
glUseProgram(prog);