The kernel complains when the damage exceeds the FB bounds:
[73850.448326] i915 0000:00:02.0: [drm:drm_atomic_check_only] [PLANE:31:plane 1A] invalid damage clip 0 0 2147483647 2147483647
Make the DRM backend behave like the Wayland one and allow compositors
to damage (0, 0, INT32_MAX, INT32_MAX) to repaint everything without
needing to know the exact buffer size.
Closes: https://github.com/swaywm/sway/issues/7632
Based on five calls:
wlr_render_timer_create - creates a timer which can be reused across
frames on the same renderer
wlr_renderer_begin_buffer_pass - now takes a timer so that backends can
record when the rendering starts and finishes
wlr_render_timer_get_time - should be called as late as possible so that
queries can make their way back from the GPU
wlr_render_timer_destroy - self-explanatory
The timer is exposed as an opaque `struct wlr_render_timer` so that
backends can store whatever they want in there.
Commit 90d08f8f1c changed the way
wlr_drm_format_intersect worked, including passing in a destination
format list. This breaks scenarios where the intersection doesn't
find any matching formats, since we still have a valid destination
format set. This changes it to only return true if more than one
matching format is present in the intersection list.
Add a src_box state field. Use the SRC_* KMS props in the DRM
backend, reject the layers in the Wayland backend (for now, we can
support it later via viewporter).
This allows callers to set a destination size different from the
buffer size to scale them.
The DRM backend supports this. The Wayland backend doesn't yet
(we'd need to wire up viewporter).
We've had this struct for a while. It'd be useful for compositors
if they want to manage the swap chains themselves instead of being
forced to use wlr_output's. Some compositors might also want to use
a swapchain without an output.
The hardcoded fallback "/usr/share/hwdata/pnp.ids" was only a
temporary solution to get things working while distributions were
still working on shipping it.
Since 1d581656c7 ("backend/drm: set "max bpc" to the max") we
set the "max bpc" property to the maximum value. The kernel driver
is supposed to clamp this value depending on hardware capabilities.
All kernel drivers lower the value depending on the GPU capabilities.
However, none of the drivers lower the value depending on the DP-MST
link capabilities. Thus, enabling a 4k@60Hz mode can fail on some
DP-MST setups due to the "max bpc" property.
Additionally, it's not a good idea to unconditionally set "max bpc"
to the max. A high bpc consumes more lanes and more clock speed,
which means higher power consumption and the busy lanes cannot be
used for something else (e.g. other data transfers on a USB-C cable).
For now, let's tie the "max bpc" to the pixel format of the buffer.
Introduce a heuristic to make "high bit-depth buffer" a synonym of
"I want the best quality".
This is not perfect: a "max bpc" higher than 8 might be desirable
for pixel formats with a color depth of 8 bits, for instance when
the color management KMS properties are used. But we don't really
support that yet, so let's leave this for later.
Closes: https://github.com/swaywm/sway/issues/7367
When the user switches away from the VT where wlroots is running,
the new DRM master may mutate the KMS state in an arbitrary manner.
For instance, let's say wlroots uses the following connector/CRTC
mapping:
- CRTC 42 drives connector DP-1
- CRTC 43 drives connector DP-2
Then the new DRM master may swap the mapping like so:
- CRTC 42 drives connector DP-2
- CRTC 43 drives connector DP-1
wlroots needs to restore its own state when the user switches back.
Some state is attached to wlr_drm_crtc (e.g. current FB), so reading
back and adopting the CRTC/connector mapping left by the previous DRM
master would be complicated (this was the source of other bugs in the
past, see [1]).
With the previous logic, wlroots merely tries to restore the state
of each connector one after the other. This fails in the scenario
described above: the kernel refuses to use CRTC 42 for DP-1, because
that CRTC is already in-use for DP-2.
Unfortunately with the legacy uAPI it's not possible to restore the
state in one go. We need to support both legacy and atomic uAPIs, so
let's fix the bug for the legacy uAPI first, and then improve the
situation for the atomic uAPI as a second step [2].
We need to disable the CRTCs we're going to switch the connectors for.
This sounds complicated, so let's just disable all CRTCs to simplify.
This causes a black screen because of the on/off modesets, but makes
VT switch much more reliable, so I'll take it.
[1]: c6d8a11d2c
[2]: https://gitlab.freedesktop.org/wlroots/wlroots/-/merge_requests/3794
Closes: https://gitlab.freedesktop.org/wlroots/wlroots/-/issues/3342
We only need it for one thing: gamma size. Moreover, some bits in
the drmModeCrtc will become out-of-date, for instance the current
mode, so let's avoid caching the whole struct and only keep what
we know won't change.
connect_drm_connector() may be called long after create_drm_connector().
During that time the DRM mode might have changed. Avoid working with
stale information.
match_obj() might return a configuration where the CRTC for an
enabled connector is switched to another one.
We don't support this correctly: the wlr_output common code would
need to query again the supported formats, re-allocate the
swapchain, etc.
What's more, the kernel doesn't even support this [1]: it
requires planes to be disabled to change their CRTC, it rejects
commits directly switching the CRTC used by a plane.
[1]: https://cgit.freedesktop.org/drm/drm-misc/tree/drivers/gpu/drm/drm_atomic.c?h=6e90293618ed476d6b11f82ce724efbb9e9a071b#n697
If the commit fails, then our local state becomes out-of-sync with
the kernel's. Additionally, when disabling a connector without going
through dealloc_crtc(), conn->crtc would still be set.
Fix this by updating conn->crtc in drm_connector_commit_state().
The raw enum value wasn't informative enough. It's not trivial to
tell whether 0 means connected or disconnected.
Drop the status from the state after realloc, since the exact same
information is printed right above.
Instead of having a pending_fb field on the struct wlr_drm_plane,
move it to struct wlr_drm_connector_state. That way, there's no
risk having a stale pending FB around: the state doesn't survive
across tests and commits.
The cursor is a special case because it's disconnected from the
atomic state: the wlr_backend_impl.set_cursor hook sets the cursor
for the next commit. Move the field to
wlr_drm_connector.cursor_pending_fb.
We'll move the pending primary FB into the connector state in the
next commit, dropping wlr_drm_plane.pending_fb in the process.
Introduce a dedicated field for the cursor, which has to be managed
in a special way due to our set_cursor API.
We were calling drm_connector_supports_vrr() before
drm_connector_alloc_crtc(). Thus, when an output is currently off,
the VRR test would always fail, because it checks that the
vrr_enabled CRTC prop exists.
The following situation can be dangerous:
- Output DP-1 is plugged in, compositor enables it.
- User VT switches away.
- User unplugs DP-1.
- User VT switches back.
- scan_drm_connectors() figures out the output is now disconnected,
uninitializes the struct wlr_output.
- The loop restoring previous output state in handle_session_active()
accesses the struct wlr_output to figure out what to restore.
By chance, we zero out the struct wlr_output after uninitializing it,
so enabled and current_mode will always be zero. But let's make sure
we handle this case explicitly, to remind future readers that it exists
and make the code less fragile.
The old drm_connector_set_mode() function did that by calling
drm_crtc_page_flip(). We lost this in the refactoring.
Fixes: f216e97983 ("backend/drm: drop drm_connector_set_mode()")
Once we are DRM master, the CRTC cannot be changed behind our back
except during a VT switch.
After a VT switch, we try to restore whatever KMS state we had last
programmed. Reloading the current CRTC from KMS breaks this and
can result in a modeset without a FB.
Closes: https://gitlab.freedesktop.org/wlroots/wlroots/-/issues/3432
The drm_connector_commit_state() call in handle_session_active()
was not resulting in any atomic commit, because it didn't match any
of the if branches: active = true, no new buffer was committed,
and adaptive sync/gamma LUT were unchanged. Thus the commit was a
no-op.
Later on, when the compositor performs regular page-flips, the
kernel would return EINVAL indicating that a modeset was needed.
Rework the logic to use a non-blocking page-flip commit if a buffer
was committed, and use a blocking commit if the connector is on or
is being disabled. The only case where we should skip the atomic
commit is when disabling (active = false) an already-disabled
connector (conn->crtc == NULL).
Note, 6936e163b5 ("backend/drm: short-circuit no-op commits")
has introduced early returns for other situations where we don't
need to perform an atomic commit (e.g. updating scale or transform
of an output).
Fixes: f216e97983 ("backend/drm: drop drm_connector_set_mode()")
Closes: https://gitlab.freedesktop.org/wlroots/wlroots/-/issues/3432
Extract the logic to fetch the current mode to a separate function
to make it more readable. Stop dying in an assert when
get_drm_prop_blob() fails. Always make it so the drmModeModeInfo
pointer is allocated so that we can free() it unconditionally.
We already have disconnect_drm_connector() to handle the
CONNECTED → DISCONNECTED transition. Let's add
connect_drm_connector() to handle DISCONNECTED → CONNECTED. This
makes scan_drm_connectors() shorter and easier to follow.
No functional change, literally just moving code around.
We were using the legacy API (with a detour through drmModeEncoder)
to find out the current CRTC for a connector. Use the atomic API
when available.
Also extract the whole logic into a separate function for better
readability, and better handle errors.
Instead of special-casing modesets, we can just cut the wrapper
and directly call drm_crtc_page_flip(). drm_connector_test() should
already have the checks previously done in drm_connector_set_mode(),
all we need to do is update enabled/mode after a successful atomic
commit.
This field becomes stale too easily: for instance, see 6adca4089c
("backend/drm: don't unconditionally set desired_enabled").
Additionally, drm_connector_alloc_crtc() needs to do some weird
dance, restoring its previous value.
Instead, add a connector arg to realloc_crtcs() to indicate a new
connector we want to enable.
We were unconditonally setting desired_enabled = true for all
connected connectors. This makes realloc_crtcs() always keep a CRTC
active for these, even if the user doesn't want to enable them.
When starting up, the compositor might call wlr_output_set_mode()
with a mode which is already the current one. wlroots will detect
this and make the wlr_output_set_mode() call a no-op. During the
next wlr_output_commit() call, wlroots will perform an atomic
commit without the ALLOW_MODESET flag.
This is an issue, because some drivers need ALLOW_MODESET even if
the mode is the same. For instance, if the FB stride or modifier
changed, some drivers require a modeset.
Add a new flag "allow_artifacts" which is set when the compositor
calls mode-setting functions. Use this flag to figure out whether
we want to perform atomic commits with ALLOW_MODESET.
(The name "allow_artifacts" is picked because ALLOW_MODESET is a
misnomer, see [1].)
[1]: https://patchwork.freedesktop.org/patch/505107/
Closes: https://gitlab.freedesktop.org/wlroots/wlroots/-/issues/3499
Previously, adaptive sync was just a hint and wouldn't make any
atomic commit fail if the backend didn't support it. The main reason
is wlr_output_test wasn't supported at the time.
Now that we have a way for compositors to test whether a change can
work, let's remove the exception for adaptive sync and convert it to
a regular output state field.
"max bpc" is a maximum value, the driver is free to choose a
smaller value depending on the bandwidth available.
Some faulty monitors misbehave with higher bpc values. We'll add
a workaround if users get hit by these in practice.
References: https://gitlab.freedesktop.org/wayland/weston/-/issues/612
The EDID 1.4 spec says that the serial number is optional:
> If this field is not used, then enter “00h, 00h, 00h, 00h”.
Leave the wlr_output.serial field NULL in that case, and hide it
from the output description.
CTA-861-G says that "graphics" is used to indicate non-analog (ie,
digital) content. With that bit set, the sink should turn off analog
reconstruction and other related filtering.
Some output commits (changing e.g. the output scale or transform)
don't require any change in the KMS state. Instead of going through
a KMS commit, return early. Blocking KMS commits can be expensive.
The wlr_output API requires compositors to wait for wlr_output.frame
before submitting a new buffer. However, compositors can perform a
commit which doesn't involve a buffer anytime.
If the commit is a modeset, we set DRM_MODE_ATOMIC_ALLOW_MODESET and
block until the commit is done. If it isn't, we currently always
perform a non-blocking commit. This is an issue because a previous
page-flip might still be in flight kernel-side, returning EBUSY.
Fix this by using blocking commits when a buffer isn't submitted by
the compositor.
Closes: https://github.com/swaywm/sway/issues/6962
References: https://gitlab.freedesktop.org/wlroots/wlroots/-/issues/2239
This allows the make/model/serial to be NULL when unset, and allows
them to be longer than the hardcoded array length.
This is a breaking change: compositors need to handle the new NULL
case, and we stop setting make/model to useless "headless" or
"wayland" strings.
Prior to [1], if an entry in a DRM format set was different than a
single LINEAR modifier, implicit modifiers were always allowed. This
has changed and now implicit modifiers are only allowed if INVALID
is in the list of modifiers.
So now we can safely enable explicit modifiers for cross-GPU imports,
without risking receiving buffers with an implicit modifier. This
should improve perf a bit on setups where two GPUs from the same vendor
are used.
This fixes the first bullet point from [2].
[1]: https://gitlab.freedesktop.org/wlroots/wlroots/-/merge_requests/3231
[2]: https://gitlab.freedesktop.org/wlroots/wlroots/-/issues/3331
Maintaining our internal table up-to-date is tedious: one needs to
manually go through the PnP ID registry [1] and check whether we're
missing any entry.
udev_hwdb already has an API to fetch a manufacturer name from its
PnP ID. Use that instead.
[1]: https://uefi.org/pnp_id_list
wlroots picks names for all outputs, but it might be desirable for
compositor to override it.
For instance, Sway will use a headless output as a fallback in
case no outputs are connected. Sway wants to clearly label the
fallback output as such and label "real" headless outputs starting
from HEADLESS-1.
drmModeAddFB2 doesn't support explicit modifiers. Only accept INVALID
which indicates an implicit modifier and LINEAR which may indicate
that GBM_BO_USE_LINEAR has been used.
They are never used in practice, which makes all of our flag
handling effectively dead code. Also, APIs such as KMS don't
provide a good way to deal with the flags. Let's just fail the
DMA-BUF import when clients provide flags.
The BO handle table exists to avoid double-closing a BO handle,
which aren't reference-counted by the kernel. But if we can
guarantee that there is only ever a single ref for each BO handle,
then we don't need the BO handle table anymore.
This is possible if we create the handle right before the ADDFB2
IOCTL, and close the handle right after. The handles are very
short-lived and we don't need to track their lifetime.
Because of multi-planar FBs, we need to be a bit careful: some
FB planes might share the same handle. But with a small check, it's
easy to avoid double-closing the same handle (which wouldn't be a
big deal anyways).
There's one gotcha though: drmModeSetCursor2 takes a BO handle as
input. Saving the handles until drmModeSetCursor2 time would require
us to track BO handle lifetimes, so we wouldn't be able to get rid
of the BO handle table. As a workaround, use drmModeGetFB to turn the
FB ID back to a BO handle, call drmModeSetCursor2 and then immediately
close the BO handle. The overhead should be minimal since these IOCTLs
are pretty cheap.
Closes: https://github.com/swaywm/wlroots/issues/3164
drmModeAddFB2 doesn't support explicit modifiers. Only accept INVALID
which indicates an implicit modifier and LINEAR which may indicate
that GBM_BO_USE_LINEAR has been used.
Instead of ensuring the renderer and allocator are initialized in each
backend, do it in wlr_backend_autocreate. This allows compositors to
create backends without any renderer/allocator if they side-step
wlr_backend_autocreate.
Since the wlr_backend_get_renderer and backend_get_allocator end up
calling wlr_renderer_autocreate and wlr_allocator_autocreate, it sounds
like a good idea to centralize all of the opimionated bits in one place.
Expose the panel orientation with wlr_drm_connector_get_panel_orientation.
Leave it to the compositor to consume this information and configure the
output accordingly.
Closes: https://github.com/swaywm/wlroots/issues/1581
Modesets require a buffer. The DRM backend tried to auto-enable
outputs when a CRTC becomes available in the past, but now that
fails because no buffer is available.
Instead of having this magic inside the DRM backend, a better
approach is to do it in the compositor or in an optional helper.
Previously, we were copying wlr_output_state on the stack and
patching it up to be guaranteed to have a proper drmModeModeInfo
stored in it (and not a custom mode). Also, we had a bunch of
helpers deriving DRM-specific information from the generic
wlr_output_state.
Copying the wlr_output_state worked fine so far, but with output
layers we'll be getting a wl_list in there. An empty wl_list stores
two pointers to itself, copying it on the stack blindly results in
infinite loops in wl_list_for_each.
To fix this, rework our DRM backend to stop copying wlr_output_state,
instead add a new struct wlr_drm_connector_state which holds both
the wlr_output_state and additional DRM-specific information.
Using GBM to import DRM dumb buffers tends to not work well. By
using GBM we're calling some driver-specific functions in Mesa.
These functions check whether Mesa can work with the buffer.
Sometimes Mesa has requirements which differ from DRM dumb buffers
and the GBM import will fail (e.g. on amdgpu).
Instead, drop GBM and use drmPrimeFDToHandle directly. But there's
a twist: BO handles are not ref'counted by the kernel and need to
be ref'counted in user-space [1]. libdrm usually performs this
bookkeeping and is used under-the-hood by Mesa.
We can't re-use libdrm for this task without using driver-specific
APIs. So let's just re-implement the ref'counting logic in wlroots.
The wlroots implementation is inspired from amdgpu's in libdrm [2].
Closes: https://github.com/swaywm/wlroots/issues/2916
[1]: https://gitlab.freedesktop.org/mesa/drm/-/merge_requests/110
[2]: 1a4c0ec9ae/amdgpu/handle_table.c
The Coordinated Video Timings (CVT) spec [1] defines two types of
timings: the "CVT standard CRT" timings and the "CVT reduced blanking"
timings (see section 3.6).
The standard CRT timings include pauses in the video stream to allow
CRT displays to reposition their electron beam at the end of each
horizontal scan line [2]. While this was desirable a few decades ago,
nowadays we can just generate a CVT reduced blanking timing by default.
wlroots users can still set full custom DRM modes via
wlr_drm_connector_add_mode.
[1]: https://glenwing.github.io/docs/VESA-CVT-1.2.pdf
[2]: https://en.wikipedia.org/wiki/Coordinated_Video_Timings#Reduced_blanking
To retrieve the formats, an allocated crtc is required. If there is no
currently no crtc available, try to allocate it. This reproducable by
having a disabled output and going through a suspend cycle with amdgpu.
On start CRTCs look like this:
00:00:00.588 [DEBUG] [wlr] [backend/drm/drm.c:1099] Reallocating CRTCs
00:00:00.588 [DEBUG] [wlr] [backend/drm/drm.c:1110] State before reallocation:
00:00:00.588 [DEBUG] [wlr] [backend/drm/drm.c:1116] 'DP-1' crtc=0 state=1 desired_enabled=1
00:00:00.588 [DEBUG] [wlr] [backend/drm/drm.c:1116] 'DP-2' crtc=1 state=1 desired_enabled=1
00:00:00.588 [DEBUG] [wlr] [backend/drm/drm.c:1116] 'HDMI-A-1' crtc=-1 state=0 desired_enabled=0
00:00:00.588 [DEBUG] [wlr] [backend/drm/drm.c:1116] 'HDMI-A-2' crtc=-1 state=0 desired_enabled=0
00:00:00.588 [DEBUG] [wlr] [backend/drm/drm.c:1116] 'DVI-D-1' crtc=-1 state=0 desired_enabled=0
00:00:00.588 [DEBUG] [wlr] [backend/drm/drm.c:1167] State after reallocation:
00:00:00.588 [DEBUG] [wlr] [backend/drm/drm.c:1174] 'DP-1' crtc=0 state=1 desired_enabled=1
00:00:00.588 [DEBUG] [wlr] [backend/drm/drm.c:1174] 'DP-2' crtc=1 state=1 desired_enabled=1
00:00:00.588 [DEBUG] [wlr] [backend/drm/drm.c:1174] 'HDMI-A-1' crtc=-1 state=0 desired_enabled=0
00:00:00.588 [DEBUG] [wlr] [backend/drm/drm.c:1174] 'HDMI-A-2' crtc=-1 state=0 desired_enabled=0
00:00:00.588 [DEBUG] [wlr] [backend/drm/drm.c:1174] 'DVI-D-1' crtc=-1 state=0 desired_enabled=0
where DP-1 is than disabled. After suspend/resume, allocation turns into:
00:30:22.680 [DEBUG] [wlr] [backend/drm/drm.c:1099] Reallocating CRTCs
00:30:22.680 [DEBUG] [wlr] [backend/drm/drm.c:1110] State before reallocation:
00:30:22.680 [DEBUG] [wlr] [backend/drm/drm.c:1116] 'DP-1' crtc=-1 state=1 desired_enabled=0
00:30:22.680 [DEBUG] [wlr] [backend/drm/drm.c:1116] 'DP-2' crtc=1 state=3 desired_enabled=1
00:30:22.680 [DEBUG] [wlr] [backend/drm/drm.c:1116] 'HDMI-A-1' crtc=-1 state=0 desired_enabled=0
00:30:22.680 [DEBUG] [wlr] [backend/drm/drm.c:1116] 'HDMI-A-2' crtc=-1 state=0 desired_enabled=0
00:30:22.680 [DEBUG] [wlr] [backend/drm/drm.c:1116] 'DVI-D-1' crtc=-1 state=0 desired_enabled=0
00:30:22.680 [DEBUG] [wlr] [backend/drm/drm.c:1167] State after reallocation:
00:30:22.680 [DEBUG] [wlr] [backend/drm/drm.c:1174] 'DP-1' crtc=-1 state=1 desired_enabled=0
00:30:22.680 [DEBUG] [wlr] [backend/drm/drm.c:1174] 'DP-2' crtc=1 state=3 desired_enabled=1
00:30:22.680 [DEBUG] [wlr] [backend/drm/drm.c:1174] 'HDMI-A-1' crtc=-1 state=0 desired_enabled=0
00:30:22.680 [DEBUG] [wlr] [backend/drm/drm.c:1174] 'HDMI-A-2' crtc=-1 state=0 desired_enabled=0
00:30:22.680 [DEBUG] [wlr] [backend/drm/drm.c:1174] 'DVI-D-1' crtc=-1 state=0 desired_enabled=0
where the crtc for DP-1 is now NULL. Trying to enable the output results
in:
10:43:36.906 [DEBUG] [sway/config/output.c:351] Turning on output DP-1
10:43:36.906 [DEBUG] [sway/config/output.c:360] Set preferred mode
10:43:36.906 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.906 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.906 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.906 [DEBUG] [sway/config/output.c:366] Preferred mode rejected, falling back to another mode
10:43:36.906 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.906 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.906 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.906 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.906 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.906 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.906 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.906 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.906 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.906 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.906 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.906 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.906 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.906 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.906 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.906 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.906 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.906 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.906 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.906 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.906 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.906 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.906 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.906 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.906 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.906 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.906 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.906 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.906 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.906 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.906 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.906 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.906 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.906 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.906 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.906 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.906 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.906 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.906 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.906 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.906 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.906 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.906 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.906 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.906 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.906 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [DEBUG] [sway/config/output.c:400] Auto-detected output scale: 1.000000
10:43:36.907 [DEBUG] [sway/config/output.c:430] Committing output DP-1
10:43:36.907 [DEBUG] [wlr] [backend/drm/drm.c:464] connector DP-1: Can't enable an output without a buffer
10:43:36.907 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
10:43:36.907 [ERROR] [wlr] [types/wlr_output.c:512] Failed to get primary display formats
10:43:36.907 [ERROR] [sway/config/output.c:435] Failed to commit output DP-1
where the primary format can't be queried since there is no crtc
allocated for the connector. Allocating the connector inside
drm_connector_get_primary_formats() fixes this issue. This is possible
since the only user of get_primary_formats() is the swapchain allocation
function, which is only called on output enable. Do the same thing for
the cursor formats in case the user queries them before the output is
enabled.
This allows the kernel to access our buffer damage. Some drivers
can take advantage of this, e.g. for PSR2 panels (Panel Self
Refresh) or for transfer over USB.
Closes: https://github.com/swaywm/wlroots/issues/1267
This reverts commit 85757665e6.
We now check if the output is enabled within wlr_output_send_frame, no
need to handle this explicitly in the DRM backend. This also fixes a
race which was introduced with this commit: if we schedule the flip,
disable and commit the output before the flip happens,
output.frame_pending will not be reset to false. We than always fail to
enable the output subsequently:
00:07:13.276 [INFO] [sway/commands.c:257] Handling command 'output DP-2 enable'
00:07:13.276 [DEBUG] [sway/commands.c:428] Subcommand: enable
00:07:13.276 [DEBUG] [sway/config/output.c:204] Merging on top of existing output config
00:07:13.276 [DEBUG] [sway/config/output.c:227] Config stored for output DP-2 (enabled: 1) (-1x-1@-1.000000Hz position 0,0 scale -1.000000 subpixel unknown transform -1) (bg /home/phoenix/Pictures/Wallpapers/mine/oper.jpg fill) (dpms 1) (max render time: -1)
00:07:13.276 [DEBUG] [sway/config/output.c:351] Turning on output DP-2
00:07:13.276 [DEBUG] [sway/config/output.c:360] Set preferred mode
00:07:13.276 [DEBUG] [wlr] [backend/drm/drm.c:465] connector DP-2: Can't enable an output without a buffer
00:07:13.276 [DEBUG] [wlr] [types/wlr_output.c:689] Attaching empty buffer to output for modeset
00:07:13.277 [DEBUG] [sway/config/output.c:329] Output DPI: 162.560000x161.364706
00:07:13.277 [DEBUG] [sway/config/output.c:400] Auto-detected output scale: 1.000000
00:07:13.277 [DEBUG] [sway/config/output.c:430] Committing output DP-2
00:07:13.277 [DEBUG] [wlr] [types/wlr_output.c:729] Tried to commit a buffer while a frame is pending
since the basic_output_test will always fail.
Reset frame_pending to false even if the output has been disabled in the
meantime.
Fixes https://github.com/swaywm/wlroots/issues/3109
When testing a modeset, make sure the caller has also provided a
buffer. This allows df0e75ba05 ("output: try skipping buffer
allocation if the backend allows it") to work as expected with the
DRM backend.
Closes: https://github.com/swaywm/wlroots/issues/3086