On DRM resume, such as switching back to a TTY, the output needs to be
modeset to the current mode. However, wlr_output_set_mode will return
early when attempting to set the mode to the current mode. This just
steps around wlr_output_set_mode and calls drm_connector_set_mode
directly.
data-control: separate out a data_offer struct
This is a prerequisite to adding primary selection support.
data-control: separate out data_control_source
This is a prerequisite to adding primary selection support, since that
doesn't use wlr_data_source, but rather wlr_primary_selection_source.
Update the data-control protocol
data-control: add primary selection support
Merge create_offer and create_primary_offer
Extract code into data_control_source_destroy()
Fix pointer style
Move resource neutralization to destructor
Store wl_resource in the data_offer
Extract data_offer destruction into a function
It doesn't make sense to keep popups opened when unmapped. We also need to do
so in wlr_xdg_popup_destroy so that popups are destroyed in the correct order.
In order for a surface to be used as a cursor plane framebuffer, it
appears that requiring the buffer to be linear is sufficient.
GBM_BO_USE_SCANOUT is added in case GBM_BO_USE_LINEAR isn't sufficient
on untested hardware.
Fixes#1323
Removed wlr_drm_plane.cursor_bo as it does not serve any purpose
anymore.
Relevant analysis (taken from the PR description):
While trying to implement a fix for #1323, I found that when exporting
the rendered surface into a DMA-BUF and reimporting it with
`GBM_BO_USE_CURSOR`, the resulting object does not appear to be valid.
After some digging (turning on drm-kms debugging and switching to legacy
mode), I managed to extract the following error: ```
[drm:__setplane_check.isra.1 [drm]] Invalid pixel format AR24
little-endian (0x34325241), modifier 0x100000000000001 ``` The format
itself refers to ARGB8888 which is the same format as
`renderer->gbm_format` used in master to create the cursor bo. However,
using `gbm_bo_create` with `GBM_BO_USE_CURSOR` results in a modifier of
0. A modifier of zero represents a linear buffer while the modifier of
the surface that is rendered to is `I915_FORMAT_MOD_X_TILED` (see
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/include/uapi/drm/drm_fourcc.h?h=v4.20.6#n263).
In order to fix this mismatch in modifier, I added the
`GBM_BO_USE_LINEAR` to the render surface and everything started to work
just fine. I wondered however, whether the export and import is really
necessary. I then decided to test if the back buffer of the render
surface works as well, and at least on my hardware (Intel HD 530 and
Intel UHD 620) it does. This is the patch in this PR and this requires
no exporting and importing.
I have to note that I cheated in order to import DMA_BUFs into a cursor
bo when doing the first tests, since on import the Intel drivers check
that the cursor is 64x64. This is strange since cursor sizes other than
64x64 have been around for quite some time now
(https://lists.freedesktop.org/archives/mesa-commit/2014-June/050268.html).
Removing this check made everything work fine. I later (while writing
this PR) found out that `__DRI_IMAGE_USE_CURSOR` (to which
`GBM_BO_USE_CURSOR` translates) has been deprecated in mesa
(https://gitlab.freedesktop.org/mesa/mesa/blob/master/include/GL/internal/dri_interface.h#L1296),
which makes me wonder what the usecase of `GBM_BO_USE_CURSOR` is. The
reason we never encountered this is that when specifying
`GBM_BO_USE_WRITE`, a dumb buffer is created trough DRM and the usage
flag never reaches the Intel driver directly. The relevant code is in
https://gitlab.freedesktop.org/mesa/mesa/blob/master/src/gbm/backends/dri/gbm_dri.c#L1011-1089
. From this it seems that as long as the size, format and modifiers are
right, any surface can be used as a cursor.
We create the EGL config with GBM_FORMAT_ARGB8888, but then initialize GBM BOs
with GBM_FORMAT_XRGB8888. This mismatch confuses Mesa.
Instead, we can always use GBM_FORMAT_ARGB8888, and use DRM_FORMAT_XRGB8888
when calling drmModeAddFB2.
Fixes https://github.com/swaywm/wlroots/issues/1438
Frame events group logically connected pointer events. It makes sense to make
the backend responsible for sending frame events, since once the events are
split (ie. once the frame events are stripped) it's not easy to figure out
which events belongs to which frame again.
This is also how Weston handles frame events.
Fixes https://github.com/swaywm/wlroots/issues/1468
This makes compositors able to block and/or customize set_selection requests
coming from clients. For instance, it's possible for a compositor to disable
rich selection content (by removing all MIME types except text/plain). This
commit implements the design proposed in [1].
Two new events are added to wlr_seat: request_set_selection and
request_set_primary_selection. Compositors need to listen to these events and
either destroy the source or effectively set the selection.
Fixes https://github.com/swaywm/wlroots/issues/1138
[1]: https://github.com/swaywm/wlroots/issues/1367#issuecomment-442403454
The noop backend is similar to headless, but it doesn't contain a
renderer. It can be used as a place to stash views for when there's no
physical outputs connected.
In particular, modified public creator and destructor function names,
added a display destroy listener, safely extract user data from
resources, send correct time (in usecs) in rootston, etc.
This is a common interface that can be used for all primary selection
protocols, as discussed in [1]. A new function wlr_seat_set_primary_selection
is added to set the primary selection for all protocols.
The seat now owns again the source, and resets the selection to NULL when
destroyed.
[1]: https://github.com/swaywm/wlroots/issues/1367#issuecomment-442403454
This commits completely refactors wlr_gtk_primary_selection. The goal is to
remove gtk-primary-selection state from the seat and better handle inert
resources where it makes sense.
wlr_seat_client.primary_selection_devices has been removed and replaced by
wlr_gtk_primary_selection_device. This allows us to make offers inert when the
current selection is replaced.
wlr_seat_set_primary_selection has been removed because it relied on wlr_seat
instead of wlr_gtk_primary_selection_device_manager. A new function,
wlr_gtk_primary_selection_device_manager_set_selection (candidate for the
longest function name in wlroots) has been added. It doesn't take a serial
anymore as serial checking only makes sense for set_selection requests coming
from Wayland clients (serial checking is now done in the Wayland interface
implementation).
Since wlr_gtk_primary_selection_device_manager is now required to set the
selection, a new function wlr_xwayland_set_gtk_primary_selection_device_manager
(candidate number two for longest function name) has been added.
Devices are now made inert when the seat goes away.
Future work includes removing the last primary selection bits from the seat,
mainly wlr_seat.primary_selection_source and wlr_seat.events.primary_selection,
replacing those with new fields in wlr_gtk_primary_selection_device. Or maybe
we could keep those in the seat and replace them with a re-usable interface
(for future zwp_primary_selection_v1 support). We need to think how we'll sync
these three protocols (GTK, X11 and wayland-protocols).
See https://github.com/swaywm/wlroots/issues/1388
wlr_subsurface_from_wlr_surface can return NULL if the wl_surface is still
alive and if the wl_subsurface has been destroyed. Make sure we check for NULL.
Fixes https://github.com/swaywm/sway/issues/3195
This commit makes it possible for a single client to have multiple data devices
for the same seat. This fixes issues with Firefox.
This mainly removes wlr_data_source.offer. We make sure we create one data
offer per device. We now make the offer inert when the source is destroyed.
Fixes the second half of https://github.com/swaywm/wlroots/issues/1041
The read format is dependent on the output, so we first need to make it
current. This fixes a race condition in wlr-screencopy-v1 where a dmabuf
client would cause EGL_NO_SURFACE to be bound at the time when
screencopy needs to query for the preferred format, causing GL errors.