simplification of apply_auto_layout

Achieved by introducing auto_group_bounds function that produces
the start/end indexes of a group inside an auto layot container.
master
wil 8 years ago
parent 3c84250be8
commit 1f47c58d63

@ -76,9 +76,10 @@ void swayc_log(log_importance_t verbosity, swayc_t *cont, const char* format, ..
enum swayc_layouts default_layout(swayc_t *output);
bool is_auto_layout(enum swayc_layouts layout);
int auto_group_start_index(swayc_t *container, int index);
int auto_group_end_index(swayc_t *container, int index);
size_t auto_group_count(swayc_t *container);
size_t auto_group_index(swayc_t *container, int index);
int auto_group_start_index(const swayc_t *container, int index);
int auto_group_end_index(const swayc_t *container, int index);
size_t auto_group_count(const swayc_t *container);
size_t auto_group_index(const swayc_t *container, int index);
bool auto_group_bounds(const swayc_t *container, size_t group_index, int *start, int *end);
#endif

@ -1164,9 +1164,7 @@ void apply_auto_layout(swayc_t *container, const double x, const double y,
// a single slave group (containing slave 1 and 2). The master
// group and slave group are layed out using L_VERT.
size_t nb_slaves = container->children->length - container->nb_master;
size_t nb_groups = (container->nb_master > 0 ? 1 : 0) +
MIN(container->nb_slave_groups, nb_slaves);
size_t nb_groups = auto_group_count(container);
// the target dimension of the container along the "major" axis, each
// group in the container will be layed out using "group_layout" along
@ -1216,74 +1214,53 @@ void apply_auto_layout(swayc_t *container, const double x, const double y,
* layout. */
double old_group_dim[nb_groups];
double old_dim = 0;
size_t group = 0;
for (int i = 0; i < container->children->length;) {
swayc_t *child = container->children->items[i];
double *dim = group_layout == L_HORIZ ? &child->height : &child->width;
if (*dim <= 0) {
// New child with uninitialized dimension
*dim = dim_maj;
if (nb_groups > 1) {
// child gets a dimension proportional to existing groups,
// it will be later scaled based on to the available size
// in the major axis.
*dim /= (nb_groups - 1);
for (size_t group = 0; group < nb_groups; ++group) {
int idx;
if (auto_group_bounds(container, group, &idx, NULL)) {
swayc_t *child = container->children->items[idx];
double *dim = group_layout == L_HORIZ ? &child->height : &child->width;
if (*dim <= 0) {
// New child with uninitialized dimension
*dim = dim_maj;
if (nb_groups > 1) {
// child gets a dimension proportional to existing groups,
// it will be later scaled based on to the available size
// in the major axis.
*dim /= (nb_groups - 1);
}
}
old_dim += *dim;
old_group_dim[group] = *dim;
}
if (i == 0 && container->nb_master > 0) {
i += container->nb_master;
} else {
i += (nb_slaves - i + container->nb_master) / (nb_groups - group);
}
old_dim += *dim;
old_group_dim[group++] = *dim;
}
double scale = dim_maj / old_dim;
/* Apply layout to each group */
pos = pos_maj;
// first child in the current group
int start;
// index immediately after the last child in the current group
int end = 0;
for (group = 0; group < nb_groups; ++group) {
// column to include next by increasing position.
size_t layout_group = master_first ? group : (group + 1) % nb_groups;
// adjusted size of the group
group_dim = old_group_dim[layout_group] * scale;
if (container->nb_master > 0 && layout_group == 0) {
start = 0;
end = MIN(container->nb_master, container->children->length);
} else {
if (group == 0) {
start = container->nb_master;
} else {
start = end;
for (size_t group = 0; group < nb_groups; ++group) {
int start, end; // index of first (inclusive) and last (exclusive) child in the group
if (auto_group_bounds(container, group, &start, &end)) {
// adjusted size of the group
group_dim = old_group_dim[group] * scale;
if (group == nb_groups - 1) {
group_dim = pos_maj + dim_maj - pos; // remaining width
}
sway_log(L_DEBUG, "Arranging container %p column %zu, children [%d,%d[ (%fx%f+%f,%f)",
container, group, start, end, *group_w, *group_h, *group_x, *group_y);
switch (group_layout) {
default:
case L_VERT:
apply_vert_layout(container, *group_x, *group_y, *group_w, *group_h, start, end);
break;
case L_HORIZ:
apply_horiz_layout(container, *group_x, *group_y, *group_w, *group_h, start, end);
break;
}
end = start + (nb_slaves - start + container->nb_master) / (nb_groups - layout_group);
}
if (group == nb_groups - 1) {
group_dim = pos_maj + dim_maj - pos; // remaining width
}
sway_log(L_DEBUG, "Arranging container %p column %zu, children [%d,%d[ (%fx%f+%f,%f)",
container, group, start, end, *group_w, *group_h, *group_x, *group_y);
switch (group_layout) {
default:
case L_VERT:
apply_vert_layout(container, *group_x, *group_y, *group_w, *group_h, start, end);
break;
case L_HORIZ:
apply_horiz_layout(container, *group_x, *group_y, *group_w, *group_h, start, end);
break;
}
/* update position for next group */
pos += group_dim;
/* update position for next group */
pos += group_dim;
}
}
}
@ -1508,7 +1485,7 @@ bool is_auto_layout(enum swayc_layouts layout) {
/**
* Return the number of master elements in a container
*/
static inline size_t auto_master_count(swayc_t *container) {
static inline size_t auto_master_count(const swayc_t *container) {
return MIN(container->nb_master, container->children->length);
}
@ -1516,21 +1493,21 @@ static inline size_t auto_master_count(swayc_t *container) {
* Return the number of children in the slave groups. This corresponds to the children
* that are not members of the master group.
*/
static inline size_t auto_slave_count(swayc_t *container) {
static inline size_t auto_slave_count(const swayc_t *container) {
return container->children->length - auto_master_count(container);
}
/**
* Return the number of slave groups in the container.
*/
size_t auto_slave_group_count(swayc_t *container) {
size_t auto_slave_group_count(const swayc_t *container) {
return MIN(container->nb_slave_groups, auto_slave_count(container));
}
/**
* Return the combined number of master and slave groups in the container.
*/
size_t auto_group_count(swayc_t *container) {
size_t auto_group_count(const swayc_t *container) {
return auto_slave_group_count(container) + (container->nb_master ? 1 : 0);
}
@ -1538,7 +1515,7 @@ size_t auto_group_count(swayc_t *container) {
* given the index of a container's child, return the index of the first child of the group
* which index is a member of.
*/
int auto_group_start_index(swayc_t *container, int index) {
int auto_group_start_index(const swayc_t *container, int index) {
if (index < 0 || ! is_auto_layout(container->layout)
|| (size_t) index < container->nb_master) {
return 0;
@ -1563,7 +1540,7 @@ int auto_group_start_index(swayc_t *container, int index) {
* that follows the one which index is a member of.
* This makes the function usable to walk through the groups in a container.
*/
int auto_group_end_index(swayc_t *container, int index) {
int auto_group_end_index(const swayc_t *container, int index) {
if (index < 0 || ! is_auto_layout(container->layout)) {
return container->children->length;
} else {
@ -1590,7 +1567,7 @@ int auto_group_end_index(swayc_t *container, int index) {
* return the index of the Group containing <index>th child of <container>.
* The index is the order of the group along the container's major axis (starting at 0).
*/
size_t auto_group_index(swayc_t *container, int index) {
size_t auto_group_index(const swayc_t *container, int index) {
if (index < 0) {
return 0;
}
@ -1616,3 +1593,48 @@ size_t auto_group_index(swayc_t *container, int index) {
return grp_idx + (master_first ? 1 : 0);
}
}
/**
* Return the first index (inclusive) and last index (exclusive) of the elements of a group in
* an auto layout.
* If the bounds of the given group can be calculated, they are returned in the start/end
* parameters (int pointers) and the return value will be true.
* The indexes are passed by reference and can be NULL.
*/
bool auto_group_bounds(const swayc_t *container, size_t group_index, int *start, int *end) {
size_t nb_grp = auto_group_count(container);
if (group_index >= nb_grp) {
return false;
}
bool master_first = (container->layout == L_AUTO_LEFT || container->layout == L_AUTO_TOP);
size_t nb_master = auto_master_count(container);
size_t nb_slave_grp = auto_slave_group_count(container);
int g_start, g_end;
if (nb_master && (master_first ? group_index == 0 : group_index == nb_grp - 1)) {
g_start = 0;
g_end = nb_master;
} else {
size_t nb_slaves = auto_slave_count(container);
size_t grp_sz = nb_slaves / nb_slave_grp;
size_t remainder = nb_slaves % nb_slave_grp;
size_t g0 = master_first && container->nb_master ? 1 : 0;
size_t g1 = g0 + nb_slave_grp - remainder;
if (group_index < g1) {
g_start = container->nb_master + (group_index - g0) * grp_sz;
g_end = g_start + grp_sz;
} else {
size_t g2 = group_index - g1;
g_start = container->nb_master
+ (nb_slave_grp - remainder) * grp_sz
+ g2 * (grp_sz + 1);
g_end = g_start + grp_sz + 1;
}
}
if (start) {
*start = g_start;
}
if (end) {
*end = g_end;
}
return true;
}

Loading…
Cancel
Save