|
|
|
@ -71,6 +71,14 @@ void add_child(swayc_t *parent, swayc_t *child) {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static double *get_height(swayc_t *cont) {
|
|
|
|
|
return &cont->height;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static double *get_width(swayc_t *cont) {
|
|
|
|
|
return &cont->width;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void insert_child(swayc_t *parent, swayc_t *child, int index) {
|
|
|
|
|
if (index > parent->children->length) {
|
|
|
|
|
index = parent->children->length;
|
|
|
|
@ -86,7 +94,44 @@ void insert_child(swayc_t *parent, swayc_t *child, int index) {
|
|
|
|
|
if (parent->type == C_WORKSPACE && child->type == C_VIEW && (parent->workspace_layout == L_TABBED || parent->workspace_layout == L_STACKED)) {
|
|
|
|
|
child = new_container(child, parent->workspace_layout);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (is_auto_layout(parent->layout)) {
|
|
|
|
|
/* go through each group, adjust the size of the first child of each group */
|
|
|
|
|
double *(*get_maj_dim)(swayc_t *cont);
|
|
|
|
|
double *(*get_min_dim)(swayc_t *cont);
|
|
|
|
|
if (parent->layout == L_AUTO_LEFT || parent->layout == L_AUTO_RIGHT) {
|
|
|
|
|
get_maj_dim = get_width;
|
|
|
|
|
get_min_dim = get_height;
|
|
|
|
|
} else {
|
|
|
|
|
get_maj_dim = get_height;
|
|
|
|
|
get_min_dim = get_width;
|
|
|
|
|
}
|
|
|
|
|
for (int i = index; i < parent->children->length;) {
|
|
|
|
|
int start = auto_group_start_index(parent, i);
|
|
|
|
|
int end = auto_group_end_index(parent, i);
|
|
|
|
|
swayc_t *first = parent->children->items[start];
|
|
|
|
|
if (start + 1 < parent->children->length) {
|
|
|
|
|
/* preserve the group's dimension along major axis */
|
|
|
|
|
*get_maj_dim(first) = *get_maj_dim(parent->children->items[start + 1]);
|
|
|
|
|
} else {
|
|
|
|
|
/* new group, let the apply_layout handle it */
|
|
|
|
|
first->height = first->width = 0;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
double remaining = *get_min_dim(parent);
|
|
|
|
|
for (int j = end - 1; j > start; --j) {
|
|
|
|
|
swayc_t *sibling = parent->children->items[j];
|
|
|
|
|
if (sibling == child) {
|
|
|
|
|
/* the inserted child won't yet have its minor
|
|
|
|
|
dimension set */
|
|
|
|
|
remaining -= *get_min_dim(parent) / (end - start);
|
|
|
|
|
} else {
|
|
|
|
|
remaining -= *get_min_dim(sibling);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
*get_min_dim(first) = remaining;
|
|
|
|
|
i = end;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void add_floating(swayc_t *ws, swayc_t *child) {
|
|
|
|
@ -118,7 +163,11 @@ swayc_t *add_sibling(swayc_t *fixed, swayc_t *active) {
|
|
|
|
|
list_add(parent->floating, active);
|
|
|
|
|
} else {
|
|
|
|
|
int i = index_child(fixed);
|
|
|
|
|
list_insert(parent->children, i + 1, active);
|
|
|
|
|
if (is_auto_layout(parent->layout)) {
|
|
|
|
|
list_add(parent->children, active);
|
|
|
|
|
} else {
|
|
|
|
|
list_insert(parent->children, i + 1, active);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
active->parent = parent;
|
|
|
|
@ -181,6 +230,42 @@ swayc_t *remove_child(swayc_t *child) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (is_auto_layout(parent->layout) && parent->children->length) {
|
|
|
|
|
/* go through each group, adjust the size of the last child of each group */
|
|
|
|
|
double *(*get_maj_dim)(swayc_t *cont);
|
|
|
|
|
double *(*get_min_dim)(swayc_t *cont);
|
|
|
|
|
if (parent->layout == L_AUTO_LEFT || parent->layout == L_AUTO_RIGHT) {
|
|
|
|
|
get_maj_dim = get_width;
|
|
|
|
|
get_min_dim = get_height;
|
|
|
|
|
} else {
|
|
|
|
|
get_maj_dim = get_height;
|
|
|
|
|
get_min_dim = get_width;
|
|
|
|
|
}
|
|
|
|
|
for (int j = parent->children->length - 1; j >= i;) {
|
|
|
|
|
int start = auto_group_start_index(parent, j);
|
|
|
|
|
int end = auto_group_end_index(parent, j);
|
|
|
|
|
swayc_t *first = parent->children->items[start];
|
|
|
|
|
if (i == start) {
|
|
|
|
|
/* removed element was first child in the current group,
|
|
|
|
|
use its size along the major axis */
|
|
|
|
|
*get_maj_dim(first) = *get_maj_dim(child);
|
|
|
|
|
} else if (start > i) {
|
|
|
|
|
/* preserve the group's dimension along major axis */
|
|
|
|
|
*get_maj_dim(first) = *get_maj_dim(parent->children->items[start - 1]);
|
|
|
|
|
}
|
|
|
|
|
if (end != parent->children->length) {
|
|
|
|
|
double remaining = *get_min_dim(parent);
|
|
|
|
|
for (int k = start; k < end - 1; ++k) {
|
|
|
|
|
swayc_t *sibling = parent->children->items[k];
|
|
|
|
|
remaining -= *get_min_dim(sibling);
|
|
|
|
|
}
|
|
|
|
|
/* last element of the group gets remaining size, elements
|
|
|
|
|
that don't change groups keep their ratio */
|
|
|
|
|
*get_min_dim((swayc_t *) parent->children->items[end - 1]) = remaining;
|
|
|
|
|
} /* else last group, let apply_layout handle it */
|
|
|
|
|
j = start - 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// Set focused to new container
|
|
|
|
|
if (parent->focused == child) {
|
|
|
|
@ -246,20 +331,51 @@ void swap_geometry(swayc_t *a, swayc_t *b) {
|
|
|
|
|
b->height = h;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void swap_children(swayc_t *container, int a, int b) {
|
|
|
|
|
if (a >= 0 && b >= 0 && a < container->children->length
|
|
|
|
|
&& b < container->children->length
|
|
|
|
|
&& a != b) {
|
|
|
|
|
swayc_t *pa = (swayc_t *)container->children->items[a];
|
|
|
|
|
swayc_t *pb = (swayc_t *)container->children->items[b];
|
|
|
|
|
container->children->items[a] = container->children->items[b];
|
|
|
|
|
container->children->items[b] = pa;
|
|
|
|
|
if (is_auto_layout(container->layout)) {
|
|
|
|
|
size_t ga = auto_group_index(container, a);
|
|
|
|
|
size_t gb = auto_group_index(container, b);
|
|
|
|
|
if (ga != gb) {
|
|
|
|
|
swap_geometry(pa, pb);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void move_container(swayc_t *container, enum movement_direction dir) {
|
|
|
|
|
enum swayc_layouts layout;
|
|
|
|
|
if (container->is_floating
|
|
|
|
|
|| (container->type != C_VIEW && container->type != C_CONTAINER)) {
|
|
|
|
|
enum swayc_layouts layout = L_NONE;
|
|
|
|
|
swayc_t *parent = container->parent;
|
|
|
|
|
if (container->is_floating || (container->type != C_VIEW && container->type != C_CONTAINER)) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
if (dir == MOVE_UP || dir == MOVE_DOWN) {
|
|
|
|
|
layout = L_VERT;
|
|
|
|
|
} else if (dir == MOVE_LEFT || dir == MOVE_RIGHT) {
|
|
|
|
|
layout = L_HORIZ;
|
|
|
|
|
} else {
|
|
|
|
|
} else if (dir == MOVE_FIRST) {
|
|
|
|
|
// swap first child in auto layout with currently focused child
|
|
|
|
|
if (is_auto_layout(parent->layout)) {
|
|
|
|
|
int focused_idx = index_child(container);
|
|
|
|
|
swayc_t *first = parent->children->items[0];
|
|
|
|
|
if (focused_idx > 0) {
|
|
|
|
|
list_swap(parent->children, 0, focused_idx);
|
|
|
|
|
swap_geometry(first, container);
|
|
|
|
|
}
|
|
|
|
|
arrange_windows(parent->parent, -1, -1);
|
|
|
|
|
ipc_event_window(container, "move");
|
|
|
|
|
set_focused_container_for(parent->parent, container);
|
|
|
|
|
}
|
|
|
|
|
return;
|
|
|
|
|
} else if (! (dir == MOVE_NEXT || dir == MOVE_PREV)) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
swayc_t *parent = container->parent;
|
|
|
|
|
swayc_t *child = container;
|
|
|
|
|
bool ascended = false;
|
|
|
|
|
|
|
|
|
@ -279,19 +395,30 @@ void move_container(swayc_t *container, enum movement_direction dir) {
|
|
|
|
|
sway_log(L_DEBUG, "container:%p, parent:%p, child %p,",
|
|
|
|
|
container,parent,child);
|
|
|
|
|
if (parent->layout == layout
|
|
|
|
|
|| (layout == L_NONE && parent->type == C_CONTAINER) /* accept any layout for next/prev direction */
|
|
|
|
|
|| (parent->layout == L_TABBED && layout == L_HORIZ)
|
|
|
|
|
|| (parent->layout == L_STACKED && layout == L_VERT)) {
|
|
|
|
|
|| (parent->layout == L_STACKED && layout == L_VERT)
|
|
|
|
|
|| is_auto_layout(parent->layout)) {
|
|
|
|
|
int diff;
|
|
|
|
|
// If it has ascended (parent has moved up), no container is removed
|
|
|
|
|
// so insert it at index, or index+1.
|
|
|
|
|
// if it has not, the moved container is removed, so it needs to be
|
|
|
|
|
// inserted at index-1, or index+1
|
|
|
|
|
if (ascended) {
|
|
|
|
|
diff = dir == MOVE_LEFT || dir == MOVE_UP ? 0 : 1;
|
|
|
|
|
diff = dir == MOVE_LEFT || dir == MOVE_UP || dir == MOVE_PREV ? 0 : 1;
|
|
|
|
|
} else {
|
|
|
|
|
diff = dir == MOVE_LEFT || dir == MOVE_UP ? -1 : 1;
|
|
|
|
|
diff = dir == MOVE_LEFT || dir == MOVE_UP || dir == MOVE_PREV ? -1 : 1;
|
|
|
|
|
}
|
|
|
|
|
int idx = index_child(child);
|
|
|
|
|
int desired = idx + diff;
|
|
|
|
|
if (dir == MOVE_NEXT || dir == MOVE_PREV) {
|
|
|
|
|
// Next/Prev always wrap.
|
|
|
|
|
if (desired < 0) {
|
|
|
|
|
desired += parent->children->length;
|
|
|
|
|
} else if (desired >= parent->children->length) {
|
|
|
|
|
desired = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
int desired = index_child(child) + diff;
|
|
|
|
|
// when it has ascended, legal insertion position is 0:len
|
|
|
|
|
// when it has not, legal insertion position is 0:len-1
|
|
|
|
|
if (desired >= 0 && desired - ascended < parent->children->length) {
|
|
|
|
@ -304,7 +431,8 @@ void move_container(swayc_t *container, enum movement_direction dir) {
|
|
|
|
|
// insert it next to focused container
|
|
|
|
|
if (parent->layout == layout
|
|
|
|
|
|| (parent->layout == L_TABBED && layout == L_HORIZ)
|
|
|
|
|
|| (parent->layout == L_STACKED && layout == L_VERT)) {
|
|
|
|
|
|| (parent->layout == L_STACKED && layout == L_VERT)
|
|
|
|
|
|| is_auto_layout(parent->layout)) {
|
|
|
|
|
desired = (diff < 0) * parent->children->length;
|
|
|
|
|
} else {
|
|
|
|
|
desired = index_child(child->focused) + 1;
|
|
|
|
@ -313,15 +441,19 @@ void move_container(swayc_t *container, enum movement_direction dir) {
|
|
|
|
|
container->width = container->height = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
swayc_t *old_parent = remove_child(container);
|
|
|
|
|
insert_child(parent, container, desired);
|
|
|
|
|
destroy_container(old_parent);
|
|
|
|
|
sway_log(L_DEBUG,"Moving to %p %d", parent, desired);
|
|
|
|
|
if (container->parent == parent) {
|
|
|
|
|
swap_children(parent, idx, desired);
|
|
|
|
|
} else {
|
|
|
|
|
swayc_t *old_parent = remove_child(container);
|
|
|
|
|
insert_child(parent, container, desired);
|
|
|
|
|
destroy_container(old_parent);
|
|
|
|
|
sway_log(L_DEBUG,"Moving to %p %d", parent, desired);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// Change parent layout if we need to
|
|
|
|
|
if (parent->children->length == 1 && parent->layout != layout) {
|
|
|
|
|
if (parent->children->length == 1 && parent->layout != layout && layout != L_NONE) {
|
|
|
|
|
/* swayc_change_layout(parent, layout); */
|
|
|
|
|
parent->layout = layout;
|
|
|
|
|
continue;
|
|
|
|
@ -776,6 +908,26 @@ void update_geometry(swayc_t *container) {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Layout application prototypes
|
|
|
|
|
*/
|
|
|
|
|
static void apply_horiz_layout(swayc_t *container, const double x,
|
|
|
|
|
const double y, const double width,
|
|
|
|
|
const double height, const int start,
|
|
|
|
|
const int end);
|
|
|
|
|
static void apply_vert_layout(swayc_t *container, const double x,
|
|
|
|
|
const double y, const double width,
|
|
|
|
|
const double height, const int start,
|
|
|
|
|
const int end);
|
|
|
|
|
static void apply_tabbed_or_stacked_layout(swayc_t *container, double x,
|
|
|
|
|
double y, double width,
|
|
|
|
|
double height);
|
|
|
|
|
|
|
|
|
|
static void apply_auto_layout(swayc_t *container, const double x, const double y,
|
|
|
|
|
const double width, const double height,
|
|
|
|
|
enum swayc_layouts group_layout,
|
|
|
|
|
bool master_first);
|
|
|
|
|
|
|
|
|
|
static void arrange_windows_r(swayc_t *container, double width, double height) {
|
|
|
|
|
int i;
|
|
|
|
|
if (width == -1 || height == -1) {
|
|
|
|
@ -783,14 +935,15 @@ static void arrange_windows_r(swayc_t *container, double width, double height) {
|
|
|
|
|
width = container->width;
|
|
|
|
|
height = container->height;
|
|
|
|
|
}
|
|
|
|
|
// pixels are indivisable. if we don't round the pixels, then the view
|
|
|
|
|
// pixels are indivisible. if we don't round the pixels, then the view
|
|
|
|
|
// calculations will be off (e.g. 50.5 + 50.5 = 101, but in reality it's
|
|
|
|
|
// 50 + 50 = 100). doing it here cascades properly to all width/height/x/y.
|
|
|
|
|
width = floor(width);
|
|
|
|
|
height = floor(height);
|
|
|
|
|
|
|
|
|
|
sway_log(L_DEBUG, "Arranging layout for %p %s %fx%f+%f,%f", container,
|
|
|
|
|
container->name, container->width, container->height, container->x, container->y);
|
|
|
|
|
container->name, container->width, container->height, container->x,
|
|
|
|
|
container->y);
|
|
|
|
|
|
|
|
|
|
double x = 0, y = 0;
|
|
|
|
|
switch (container->type) {
|
|
|
|
@ -902,135 +1055,298 @@ static void arrange_windows_r(swayc_t *container, double width, double height) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
double scale = 0;
|
|
|
|
|
switch (container->layout) {
|
|
|
|
|
case L_HORIZ:
|
|
|
|
|
default:
|
|
|
|
|
// Calculate total width
|
|
|
|
|
for (i = 0; i < container->children->length; ++i) {
|
|
|
|
|
double *old_width = &((swayc_t *)container->children->items[i])->width;
|
|
|
|
|
if (*old_width <= 0) {
|
|
|
|
|
if (container->children->length > 1) {
|
|
|
|
|
*old_width = width / (container->children->length - 1);
|
|
|
|
|
} else {
|
|
|
|
|
*old_width = width;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
scale += *old_width;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Resize windows
|
|
|
|
|
if (scale > 0.1) {
|
|
|
|
|
scale = width / scale;
|
|
|
|
|
sway_log(L_DEBUG, "Arranging %p horizontally", container);
|
|
|
|
|
swayc_t *focused = NULL;
|
|
|
|
|
for (i = 0; i < container->children->length; ++i) {
|
|
|
|
|
swayc_t *child = container->children->items[i];
|
|
|
|
|
sway_log(L_DEBUG, "Calculating arrangement for %p:%d (will scale %f by %f)", child, child->type, width, scale);
|
|
|
|
|
child->x = x;
|
|
|
|
|
child->y = y;
|
|
|
|
|
|
|
|
|
|
if (child == container->focused) {
|
|
|
|
|
focused = child;
|
|
|
|
|
}
|
|
|
|
|
apply_horiz_layout(container, x, y, width, height, 0,
|
|
|
|
|
container->children->length);
|
|
|
|
|
break;
|
|
|
|
|
case L_VERT:
|
|
|
|
|
apply_vert_layout(container, x, y, width, height, 0,
|
|
|
|
|
container->children->length);
|
|
|
|
|
break;
|
|
|
|
|
case L_TABBED:
|
|
|
|
|
case L_STACKED:
|
|
|
|
|
apply_tabbed_or_stacked_layout(container, x, y, width, height);
|
|
|
|
|
break;
|
|
|
|
|
case L_AUTO_LEFT:
|
|
|
|
|
apply_auto_layout(container, x, y, width, height, L_VERT, true);
|
|
|
|
|
break;
|
|
|
|
|
case L_AUTO_RIGHT:
|
|
|
|
|
apply_auto_layout(container, x, y, width, height, L_VERT, false);
|
|
|
|
|
break;
|
|
|
|
|
case L_AUTO_TOP:
|
|
|
|
|
apply_auto_layout(container, x, y, width, height, L_HORIZ, true);
|
|
|
|
|
break;
|
|
|
|
|
case L_AUTO_BOTTOM:
|
|
|
|
|
apply_auto_layout(container, x, y, width, height, L_HORIZ, false);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (i == container->children->length - 1) {
|
|
|
|
|
double remaining_width = container->x + width - x;
|
|
|
|
|
arrange_windows_r(child, remaining_width, height);
|
|
|
|
|
} else {
|
|
|
|
|
arrange_windows_r(child, child->width * scale, height);
|
|
|
|
|
// Arrage floating layouts for workspaces last
|
|
|
|
|
if (container->type == C_WORKSPACE) {
|
|
|
|
|
for (int i = 0; i < container->floating->length; ++i) {
|
|
|
|
|
swayc_t *view = container->floating->items[i];
|
|
|
|
|
if (view->type == C_VIEW) {
|
|
|
|
|
update_geometry(view);
|
|
|
|
|
sway_log(L_DEBUG, "Set floating view to %.f x %.f @ %.f, %.f",
|
|
|
|
|
view->width, view->height, view->x, view->y);
|
|
|
|
|
if (swayc_is_fullscreen(view)) {
|
|
|
|
|
wlc_view_bring_to_front(view->handle);
|
|
|
|
|
} else if (!container->focused ||
|
|
|
|
|
!swayc_is_fullscreen(container->focused)) {
|
|
|
|
|
wlc_view_bring_to_front(view->handle);
|
|
|
|
|
}
|
|
|
|
|
x += child->width;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// update focused view border last because it may
|
|
|
|
|
// depend on the title bar geometry of its siblings.
|
|
|
|
|
if (focused && container->children->length > 1) {
|
|
|
|
|
update_container_border(focused);
|
|
|
|
|
void apply_horiz_layout(swayc_t *container, const double x, const double y,
|
|
|
|
|
const double width, const double height,
|
|
|
|
|
const int start, const int end) {
|
|
|
|
|
double scale = 0;
|
|
|
|
|
// Calculate total width
|
|
|
|
|
for (int i = start; i < end; ++i) {
|
|
|
|
|
double *old_width = &((swayc_t *)container->children->items[i])->width;
|
|
|
|
|
if (*old_width <= 0) {
|
|
|
|
|
if (end - start > 1) {
|
|
|
|
|
*old_width = width / (end - start - 1);
|
|
|
|
|
} else {
|
|
|
|
|
*old_width = width;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case L_VERT:
|
|
|
|
|
// Calculate total height
|
|
|
|
|
for (i = 0; i < container->children->length; ++i) {
|
|
|
|
|
double *old_height = &((swayc_t *)container->children->items[i])->height;
|
|
|
|
|
if (*old_height <= 0) {
|
|
|
|
|
if (container->children->length > 1) {
|
|
|
|
|
*old_height = height / (container->children->length - 1);
|
|
|
|
|
} else {
|
|
|
|
|
*old_height = height;
|
|
|
|
|
}
|
|
|
|
|
scale += *old_width;
|
|
|
|
|
}
|
|
|
|
|
scale = width / scale;
|
|
|
|
|
|
|
|
|
|
// Resize windows
|
|
|
|
|
double child_x = x;
|
|
|
|
|
if (scale > 0.1) {
|
|
|
|
|
sway_log(L_DEBUG, "Arranging %p horizontally", container);
|
|
|
|
|
swayc_t *focused = NULL;
|
|
|
|
|
for (int i = start; i < end; ++i) {
|
|
|
|
|
swayc_t *child = container->children->items[i];
|
|
|
|
|
sway_log(L_DEBUG,
|
|
|
|
|
"Calculating arrangement for %p:%d (will scale %f by %f)", child,
|
|
|
|
|
child->type, width, scale);
|
|
|
|
|
child->x = child_x;
|
|
|
|
|
child->y = y;
|
|
|
|
|
|
|
|
|
|
if (child == container->focused) {
|
|
|
|
|
focused = child;
|
|
|
|
|
}
|
|
|
|
|
scale += *old_height;
|
|
|
|
|
}
|
|
|
|
|
// Resize
|
|
|
|
|
if (scale > 0.1) {
|
|
|
|
|
scale = height / scale;
|
|
|
|
|
sway_log(L_DEBUG, "Arranging %p vertically", container);
|
|
|
|
|
swayc_t *focused = NULL;
|
|
|
|
|
for (i = 0; i < container->children->length; ++i) {
|
|
|
|
|
swayc_t *child = container->children->items[i];
|
|
|
|
|
sway_log(L_DEBUG, "Calculating arrangement for %p:%d (will scale %f by %f)", child, child->type, height, scale);
|
|
|
|
|
child->x = x;
|
|
|
|
|
child->y = y;
|
|
|
|
|
|
|
|
|
|
if (child == container->focused) {
|
|
|
|
|
focused = child;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (i == container->children->length - 1) {
|
|
|
|
|
double remaining_height = container->y + height - y;
|
|
|
|
|
arrange_windows_r(child, width, remaining_height);
|
|
|
|
|
} else {
|
|
|
|
|
arrange_windows_r(child, width, child->height * scale);
|
|
|
|
|
}
|
|
|
|
|
y += child->height;
|
|
|
|
|
if (i == end - 1) {
|
|
|
|
|
double remaining_width = x + width - child_x;
|
|
|
|
|
arrange_windows_r(child, remaining_width, height);
|
|
|
|
|
} else {
|
|
|
|
|
arrange_windows_r(child, child->width * scale, height);
|
|
|
|
|
}
|
|
|
|
|
child_x += child->width;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// update focused view border last because it may
|
|
|
|
|
// depend on the title bar geometry of its siblings.
|
|
|
|
|
if (focused && container->children->length > 1) {
|
|
|
|
|
update_container_border(focused);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// update focused view border last because it may
|
|
|
|
|
// depend on the title bar geometry of its siblings.
|
|
|
|
|
if (focused && container->children->length > 1) {
|
|
|
|
|
update_container_border(focused);
|
|
|
|
|
void apply_vert_layout(swayc_t *container, const double x, const double y,
|
|
|
|
|
const double width, const double height, const int start,
|
|
|
|
|
const int end) {
|
|
|
|
|
int i;
|
|
|
|
|
double scale = 0;
|
|
|
|
|
// Calculate total height
|
|
|
|
|
for (i = start; i < end; ++i) {
|
|
|
|
|
double *old_height = &((swayc_t *)container->children->items[i])->height;
|
|
|
|
|
if (*old_height <= 0) {
|
|
|
|
|
if (end - start > 1) {
|
|
|
|
|
*old_height = height / (end - start - 1);
|
|
|
|
|
} else {
|
|
|
|
|
*old_height = height;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case L_TABBED:
|
|
|
|
|
case L_STACKED:
|
|
|
|
|
{
|
|
|
|
|
swayc_t *focused = NULL;
|
|
|
|
|
for (i = 0; i < container->children->length; ++i) {
|
|
|
|
|
swayc_t *child = container->children->items[i];
|
|
|
|
|
child->x = x;
|
|
|
|
|
child->y = y;
|
|
|
|
|
if (child == container->focused) {
|
|
|
|
|
focused = child;
|
|
|
|
|
} else {
|
|
|
|
|
arrange_windows_r(child, width, height);
|
|
|
|
|
}
|
|
|
|
|
scale += *old_height;
|
|
|
|
|
}
|
|
|
|
|
scale = height / scale;
|
|
|
|
|
|
|
|
|
|
// Resize
|
|
|
|
|
double child_y = y;
|
|
|
|
|
if (scale > 0.1) {
|
|
|
|
|
sway_log(L_DEBUG, "Arranging %p vertically", container);
|
|
|
|
|
swayc_t *focused = NULL;
|
|
|
|
|
for (i = start; i < end; ++i) {
|
|
|
|
|
swayc_t *child = container->children->items[i];
|
|
|
|
|
sway_log(L_DEBUG,
|
|
|
|
|
"Calculating arrangement for %p:%d (will scale %f by %f)", child,
|
|
|
|
|
child->type, height, scale);
|
|
|
|
|
child->x = x;
|
|
|
|
|
child->y = child_y;
|
|
|
|
|
|
|
|
|
|
if (child == container->focused) {
|
|
|
|
|
focused = child;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (focused) {
|
|
|
|
|
arrange_windows_r(focused, width, height);
|
|
|
|
|
if (i == end - 1) {
|
|
|
|
|
double remaining_height = y + height - child_y;
|
|
|
|
|
arrange_windows_r(child, width, remaining_height);
|
|
|
|
|
} else {
|
|
|
|
|
arrange_windows_r(child, width, child->height * scale);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
child_y += child->height;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// update focused view border last because it may
|
|
|
|
|
// depend on the title bar geometry of its siblings.
|
|
|
|
|
if (focused && container->children->length > 1) {
|
|
|
|
|
update_container_border(focused);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Arrage floating layouts for workspaces last
|
|
|
|
|
if (container->type == C_WORKSPACE) {
|
|
|
|
|
for (i = 0; i < container->floating->length; ++i) {
|
|
|
|
|
swayc_t *view = container->floating->items[i];
|
|
|
|
|
if (view->type == C_VIEW) {
|
|
|
|
|
update_geometry(view);
|
|
|
|
|
sway_log(L_DEBUG, "Set floating view to %.f x %.f @ %.f, %.f", view->width,
|
|
|
|
|
view->height, view->x, view->y);
|
|
|
|
|
if (swayc_is_fullscreen(view)) {
|
|
|
|
|
wlc_view_bring_to_front(view->handle);
|
|
|
|
|
} else if (!container->focused
|
|
|
|
|
|| !swayc_is_fullscreen(container->focused)) {
|
|
|
|
|
wlc_view_bring_to_front(view->handle);
|
|
|
|
|
void apply_tabbed_or_stacked_layout(swayc_t *container, double x, double y,
|
|
|
|
|
double width, double height) {
|
|
|
|
|
int i;
|
|
|
|
|
swayc_t *focused = NULL;
|
|
|
|
|
for (i = 0; i < container->children->length; ++i) {
|
|
|
|
|
swayc_t *child = container->children->items[i];
|
|
|
|
|
child->x = x;
|
|
|
|
|
child->y = y;
|
|
|
|
|
if (child == container->focused) {
|
|
|
|
|
focused = child;
|
|
|
|
|
} else {
|
|
|
|
|
arrange_windows_r(child, width, height);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (focused) {
|
|
|
|
|
arrange_windows_r(focused, width, height);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void apply_auto_layout(swayc_t *container, const double x, const double y,
|
|
|
|
|
const double width, const double height,
|
|
|
|
|
enum swayc_layouts group_layout,
|
|
|
|
|
bool master_first) {
|
|
|
|
|
// Auto layout "container" in width x height @ x, y
|
|
|
|
|
// using "group_layout" for each of the groups in the container.
|
|
|
|
|
// There is one "master" group, plus container->nb_slave_groups.
|
|
|
|
|
// Each group is layed out side by side following the "major" axis.
|
|
|
|
|
// The direction of the layout used for groups is the "minor" axis.
|
|
|
|
|
// Example:
|
|
|
|
|
//
|
|
|
|
|
// ---- major axis -->
|
|
|
|
|
// +---------+-----------+
|
|
|
|
|
// | | | |
|
|
|
|
|
// | master | slave 1 | |
|
|
|
|
|
// | +-----------+ | minor axis (direction of group_layout)
|
|
|
|
|
// | | | |
|
|
|
|
|
// | | slave 2 | V
|
|
|
|
|
// +---------+-----------+
|
|
|
|
|
//
|
|
|
|
|
// container with three children (one master and two slaves) and
|
|
|
|
|
// a single slave group (containing slave 1 and 2). The master
|
|
|
|
|
// group and slave group are layed out using L_VERT.
|
|
|
|
|
|
|
|
|
|
size_t nb_groups = auto_group_count(container);
|
|
|
|
|
|
|
|
|
|
// the target dimension of the container along the "major" axis, each
|
|
|
|
|
// group in the container will be layed out using "group_layout" along
|
|
|
|
|
// the "minor" axis.
|
|
|
|
|
double dim_maj;
|
|
|
|
|
double pos_maj;
|
|
|
|
|
|
|
|
|
|
// x and y coords for the next group to be laid out.
|
|
|
|
|
const double *group_x, *group_y;
|
|
|
|
|
|
|
|
|
|
// pos of the next group to layout along the major axis
|
|
|
|
|
double pos;
|
|
|
|
|
|
|
|
|
|
// size of the next group along the major axis.
|
|
|
|
|
double group_dim;
|
|
|
|
|
|
|
|
|
|
// height and width of next group to be laid out.
|
|
|
|
|
const double *group_h, *group_w;
|
|
|
|
|
|
|
|
|
|
switch (group_layout) {
|
|
|
|
|
default:
|
|
|
|
|
sway_log(L_DEBUG, "Unknown layout type (%d) used in %s()",
|
|
|
|
|
group_layout, __func__);
|
|
|
|
|
/* fall through */
|
|
|
|
|
case L_VERT:
|
|
|
|
|
dim_maj = width;
|
|
|
|
|
pos_maj = x;
|
|
|
|
|
|
|
|
|
|
group_x = &pos;
|
|
|
|
|
group_y = &y;
|
|
|
|
|
group_w = &group_dim;
|
|
|
|
|
group_h = &height;
|
|
|
|
|
break;
|
|
|
|
|
case L_HORIZ:
|
|
|
|
|
dim_maj = height;
|
|
|
|
|
pos_maj = y;
|
|
|
|
|
|
|
|
|
|
group_x = &x;
|
|
|
|
|
group_y = &pos;
|
|
|
|
|
group_w = &width;
|
|
|
|
|
group_h = &group_dim;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Determine the dimension of each of the groups in the layout.
|
|
|
|
|
* Dimension will be width for a VERT layout and height for a HORIZ
|
|
|
|
|
* layout. */
|
|
|
|
|
double old_group_dim[nb_groups];
|
|
|
|
|
double old_dim = 0;
|
|
|
|
|
for (size_t group = 0; group < nb_groups; ++group) {
|
|
|
|
|
int idx;
|
|
|
|
|
if (auto_group_bounds(container, group, &idx, NULL)) {
|
|
|
|
|
swayc_t *child = container->children->items[idx];
|
|
|
|
|
double *dim = group_layout == L_HORIZ ? &child->height : &child->width;
|
|
|
|
|
if (*dim <= 0) {
|
|
|
|
|
// New child with uninitialized dimension
|
|
|
|
|
*dim = dim_maj;
|
|
|
|
|
if (nb_groups > 1) {
|
|
|
|
|
// child gets a dimension proportional to existing groups,
|
|
|
|
|
// it will be later scaled based on to the available size
|
|
|
|
|
// in the major axis.
|
|
|
|
|
*dim /= (nb_groups - 1);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
old_dim += *dim;
|
|
|
|
|
old_group_dim[group] = *dim;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
double scale = dim_maj / old_dim;
|
|
|
|
|
|
|
|
|
|
/* Apply layout to each group */
|
|
|
|
|
pos = pos_maj;
|
|
|
|
|
|
|
|
|
|
for (size_t group = 0; group < nb_groups; ++group) {
|
|
|
|
|
int start, end; // index of first (inclusive) and last (exclusive) child in the group
|
|
|
|
|
if (auto_group_bounds(container, group, &start, &end)) {
|
|
|
|
|
// adjusted size of the group
|
|
|
|
|
group_dim = old_group_dim[group] * scale;
|
|
|
|
|
if (group == nb_groups - 1) {
|
|
|
|
|
group_dim = pos_maj + dim_maj - pos; // remaining width
|
|
|
|
|
}
|
|
|
|
|
sway_log(L_DEBUG, "Arranging container %p column %zu, children [%d,%d[ (%fx%f+%f,%f)",
|
|
|
|
|
container, group, start, end, *group_w, *group_h, *group_x, *group_y);
|
|
|
|
|
switch (group_layout) {
|
|
|
|
|
default:
|
|
|
|
|
case L_VERT:
|
|
|
|
|
apply_vert_layout(container, *group_x, *group_y, *group_w, *group_h, start, end);
|
|
|
|
|
break;
|
|
|
|
|
case L_HORIZ:
|
|
|
|
|
apply_horiz_layout(container, *group_x, *group_y, *group_w, *group_h, start, end);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* update position for next group */
|
|
|
|
|
pos += group_dim;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -1106,6 +1422,21 @@ swayc_t *get_swayc_in_direction_under(swayc_t *container, enum movement_directio
|
|
|
|
|
return parent;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (dir == MOVE_PREV || dir == MOVE_NEXT) {
|
|
|
|
|
int focused_idx = index_child(container);
|
|
|
|
|
if (focused_idx == -1) {
|
|
|
|
|
return NULL;
|
|
|
|
|
} else {
|
|
|
|
|
int desired = (focused_idx + (dir == MOVE_NEXT ? 1 : -1)) %
|
|
|
|
|
parent->children->length;
|
|
|
|
|
if (desired < 0) {
|
|
|
|
|
desired += parent->children->length;
|
|
|
|
|
}
|
|
|
|
|
return parent->children->items[desired];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If moving to an adjacent output we need a starting position (since this
|
|
|
|
|
// output might border to multiple outputs).
|
|
|
|
|
struct wlc_point abs_pos;
|
|
|
|
@ -1128,7 +1459,8 @@ swayc_t *get_swayc_in_direction_under(swayc_t *container, enum movement_directio
|
|
|
|
|
while (true) {
|
|
|
|
|
// Test if we can even make a difference here
|
|
|
|
|
bool can_move = false;
|
|
|
|
|
int diff = 0;
|
|
|
|
|
int desired;
|
|
|
|
|
int idx = index_child(container);
|
|
|
|
|
if (parent->type == C_ROOT) {
|
|
|
|
|
swayc_t *output = swayc_adjacent_output(container, dir, &abs_pos, true);
|
|
|
|
|
if (!output || output == container) {
|
|
|
|
@ -1137,21 +1469,36 @@ swayc_t *get_swayc_in_direction_under(swayc_t *container, enum movement_directio
|
|
|
|
|
sway_log(L_DEBUG, "Moving between outputs");
|
|
|
|
|
return get_swayc_in_output_direction(output, dir);
|
|
|
|
|
} else {
|
|
|
|
|
if (dir == MOVE_LEFT || dir == MOVE_RIGHT) {
|
|
|
|
|
if (parent->layout == L_HORIZ || parent->layout == L_TABBED) {
|
|
|
|
|
can_move = true;
|
|
|
|
|
diff = dir == MOVE_LEFT ? -1 : 1;
|
|
|
|
|
if (is_auto_layout(parent->layout)) {
|
|
|
|
|
bool is_major = parent->layout == L_AUTO_LEFT || parent->layout == L_AUTO_RIGHT
|
|
|
|
|
? dir == MOVE_LEFT || dir == MOVE_RIGHT
|
|
|
|
|
: dir == MOVE_DOWN || dir == MOVE_UP;
|
|
|
|
|
size_t gidx = auto_group_index(parent, idx);
|
|
|
|
|
if (is_major) {
|
|
|
|
|
size_t desired_grp = gidx + (dir == MOVE_RIGHT || dir == MOVE_DOWN ? 1 : -1);
|
|
|
|
|
can_move = auto_group_bounds(parent, desired_grp, &desired, NULL);
|
|
|
|
|
} else {
|
|
|
|
|
desired = idx + (dir == MOVE_RIGHT || dir == MOVE_DOWN ? 1 : -1);
|
|
|
|
|
int start, end;
|
|
|
|
|
can_move = auto_group_bounds(parent, gidx, &start, &end)
|
|
|
|
|
&& desired >= start && desired < end;
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
if (parent->layout == L_VERT || parent->layout == L_STACKED) {
|
|
|
|
|
can_move = true;
|
|
|
|
|
diff = dir == MOVE_UP ? -1 : 1;
|
|
|
|
|
if (dir == MOVE_LEFT || dir == MOVE_RIGHT) {
|
|
|
|
|
if (parent->layout == L_HORIZ || parent->layout == L_TABBED) {
|
|
|
|
|
can_move = true;
|
|
|
|
|
desired = idx + (dir == MOVE_LEFT ? -1 : 1);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
if (parent->layout == L_VERT || parent->layout == L_STACKED) {
|
|
|
|
|
can_move = true;
|
|
|
|
|
desired = idx + (dir == MOVE_UP ? -1 : 1);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (can_move) {
|
|
|
|
|
int desired = index_child(container) + diff;
|
|
|
|
|
if (container->is_floating) {
|
|
|
|
|
if (desired < 0) {
|
|
|
|
|
wrap_candidate = parent->floating->items[parent->floating->length-1];
|
|
|
|
@ -1178,6 +1525,8 @@ swayc_t *get_swayc_in_direction_under(swayc_t *container, enum movement_directio
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
sway_log(L_DEBUG, "%s cont %d-%p dir %i sibling %d: %p", __func__,
|
|
|
|
|
idx, container, dir, desired, parent->children->items[desired]);
|
|
|
|
|
return parent->children->items[desired];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -1233,3 +1582,167 @@ enum swayc_layouts default_layout(swayc_t *output) {
|
|
|
|
|
return L_VERT;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool is_auto_layout(enum swayc_layouts layout) {
|
|
|
|
|
return (layout >= L_AUTO_FIRST) && (layout <= L_AUTO_LAST);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Return the number of master elements in a container
|
|
|
|
|
*/
|
|
|
|
|
static inline size_t auto_master_count(const swayc_t *container) {
|
|
|
|
|
sway_assert(container->children->length >= 0, "Container %p has (negative) children %d",
|
|
|
|
|
container, container->children->length);
|
|
|
|
|
return MIN(container->nb_master, (size_t)container->children->length);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Return the number of children in the slave groups. This corresponds to the children
|
|
|
|
|
* that are not members of the master group.
|
|
|
|
|
*/
|
|
|
|
|
static inline size_t auto_slave_count(const swayc_t *container) {
|
|
|
|
|
return container->children->length - auto_master_count(container);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Return the number of slave groups in the container.
|
|
|
|
|
*/
|
|
|
|
|
size_t auto_slave_group_count(const swayc_t *container) {
|
|
|
|
|
return MIN(container->nb_slave_groups, auto_slave_count(container));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Return the combined number of master and slave groups in the container.
|
|
|
|
|
*/
|
|
|
|
|
size_t auto_group_count(const swayc_t *container) {
|
|
|
|
|
return auto_slave_group_count(container)
|
|
|
|
|
+ (container->children->length && container->nb_master ? 1 : 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* given the index of a container's child, return the index of the first child of the group
|
|
|
|
|
* which index is a member of.
|
|
|
|
|
*/
|
|
|
|
|
int auto_group_start_index(const swayc_t *container, int index) {
|
|
|
|
|
if (index < 0 || ! is_auto_layout(container->layout)
|
|
|
|
|
|| (size_t)index < container->nb_master) {
|
|
|
|
|
return 0;
|
|
|
|
|
} else {
|
|
|
|
|
size_t nb_slaves = auto_slave_count(container);
|
|
|
|
|
size_t nb_slave_grp = auto_slave_group_count(container);
|
|
|
|
|
size_t grp_sz = nb_slaves / nb_slave_grp;
|
|
|
|
|
size_t remainder = nb_slaves % nb_slave_grp;
|
|
|
|
|
int idx2 = (nb_slave_grp - remainder) * grp_sz + container->nb_master;
|
|
|
|
|
int start_idx;
|
|
|
|
|
if (index < idx2) {
|
|
|
|
|
start_idx = ((index - container->nb_master) / grp_sz) * grp_sz + container->nb_master;
|
|
|
|
|
} else {
|
|
|
|
|
start_idx = idx2 + ((index - idx2) / (grp_sz + 1)) * (grp_sz + 1);
|
|
|
|
|
}
|
|
|
|
|
return MIN(start_idx, container->children->length);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* given the index of a container's child, return the index of the first child of the group
|
|
|
|
|
* that follows the one which index is a member of.
|
|
|
|
|
* This makes the function usable to walk through the groups in a container.
|
|
|
|
|
*/
|
|
|
|
|
int auto_group_end_index(const swayc_t *container, int index) {
|
|
|
|
|
if (index < 0 || ! is_auto_layout(container->layout)) {
|
|
|
|
|
return container->children->length;
|
|
|
|
|
} else {
|
|
|
|
|
int nxt_idx;
|
|
|
|
|
if ((size_t)index < container->nb_master) {
|
|
|
|
|
nxt_idx = auto_master_count(container);
|
|
|
|
|
} else {
|
|
|
|
|
size_t nb_slaves = auto_slave_count(container);
|
|
|
|
|
size_t nb_slave_grp = auto_slave_group_count(container);
|
|
|
|
|
size_t grp_sz = nb_slaves / nb_slave_grp;
|
|
|
|
|
size_t remainder = nb_slaves % nb_slave_grp;
|
|
|
|
|
int idx2 = (nb_slave_grp - remainder) * grp_sz + container->nb_master;
|
|
|
|
|
if (index < idx2) {
|
|
|
|
|
nxt_idx = ((index - container->nb_master) / grp_sz + 1) * grp_sz + container->nb_master;
|
|
|
|
|
} else {
|
|
|
|
|
nxt_idx = idx2 + ((index - idx2) / (grp_sz + 1) + 1) * (grp_sz + 1);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return MIN(nxt_idx, container->children->length);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* return the index of the Group containing <index>th child of <container>.
|
|
|
|
|
* The index is the order of the group along the container's major axis (starting at 0).
|
|
|
|
|
*/
|
|
|
|
|
size_t auto_group_index(const swayc_t *container, int index) {
|
|
|
|
|
if (index < 0) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
bool master_first = (container->layout == L_AUTO_LEFT || container->layout == L_AUTO_TOP);
|
|
|
|
|
size_t nb_slaves = auto_slave_count(container);
|
|
|
|
|
if ((size_t)index < container->nb_master) {
|
|
|
|
|
if (master_first || nb_slaves <= 0) {
|
|
|
|
|
return 0;
|
|
|
|
|
} else {
|
|
|
|
|
return auto_slave_group_count(container);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
size_t nb_slave_grp = auto_slave_group_count(container);
|
|
|
|
|
size_t grp_sz = nb_slaves / nb_slave_grp;
|
|
|
|
|
size_t remainder = nb_slaves % nb_slave_grp;
|
|
|
|
|
int idx2 = (nb_slave_grp - remainder) * grp_sz + container->nb_master;
|
|
|
|
|
size_t grp_idx;
|
|
|
|
|
if (index < idx2) {
|
|
|
|
|
grp_idx = (index - container->nb_master) / grp_sz;
|
|
|
|
|
} else {
|
|
|
|
|
grp_idx = (nb_slave_grp - remainder) + (index - idx2) / (grp_sz + 1) ;
|
|
|
|
|
}
|
|
|
|
|
return grp_idx + (master_first && container-> nb_master ? 1 : 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Return the first index (inclusive) and last index (exclusive) of the elements of a group in
|
|
|
|
|
* an auto layout.
|
|
|
|
|
* If the bounds of the given group can be calculated, they are returned in the start/end
|
|
|
|
|
* parameters (int pointers) and the return value will be true.
|
|
|
|
|
* The indexes are passed by reference and can be NULL.
|
|
|
|
|
*/
|
|
|
|
|
bool auto_group_bounds(const swayc_t *container, size_t group_index, int *start, int *end) {
|
|
|
|
|
size_t nb_grp = auto_group_count(container);
|
|
|
|
|
if (group_index >= nb_grp) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
bool master_first = (container->layout == L_AUTO_LEFT || container->layout == L_AUTO_TOP);
|
|
|
|
|
size_t nb_master = auto_master_count(container);
|
|
|
|
|
size_t nb_slave_grp = auto_slave_group_count(container);
|
|
|
|
|
int g_start, g_end;
|
|
|
|
|
if (nb_master && (master_first ? group_index == 0 : group_index == nb_grp - 1)) {
|
|
|
|
|
g_start = 0;
|
|
|
|
|
g_end = nb_master;
|
|
|
|
|
} else {
|
|
|
|
|
size_t nb_slaves = auto_slave_count(container);
|
|
|
|
|
size_t grp_sz = nb_slaves / nb_slave_grp;
|
|
|
|
|
size_t remainder = nb_slaves % nb_slave_grp;
|
|
|
|
|
size_t g0 = master_first && container->nb_master ? 1 : 0;
|
|
|
|
|
size_t g1 = g0 + nb_slave_grp - remainder;
|
|
|
|
|
if (group_index < g1) {
|
|
|
|
|
g_start = container->nb_master + (group_index - g0) * grp_sz;
|
|
|
|
|
g_end = g_start + grp_sz;
|
|
|
|
|
} else {
|
|
|
|
|
size_t g2 = group_index - g1;
|
|
|
|
|
g_start = container->nb_master
|
|
|
|
|
+ (nb_slave_grp - remainder) * grp_sz
|
|
|
|
|
+ g2 * (grp_sz + 1);
|
|
|
|
|
g_end = g_start + grp_sz + 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (start) {
|
|
|
|
|
*start = g_start;
|
|
|
|
|
}
|
|
|
|
|
if (end) {
|
|
|
|
|
*end = g_end;
|
|
|
|
|
}
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|