#include #include #include #include #include #include "render/color.h" #include "render/vulkan.h" #include "types/wlr_matrix.h" static const struct wlr_render_pass_impl render_pass_impl; static const struct wlr_addon_interface vk_color_transform_impl; static struct wlr_vk_render_pass *get_render_pass(struct wlr_render_pass *wlr_pass) { assert(wlr_pass->impl == &render_pass_impl); struct wlr_vk_render_pass *pass = wl_container_of(wlr_pass, pass, base); return pass; } static struct wlr_vk_color_transform *get_color_transform( struct wlr_color_transform *c, struct wlr_vk_renderer *renderer) { struct wlr_addon *a = wlr_addon_find(&c->addons, renderer, &vk_color_transform_impl); if (!a) { return NULL; } struct wlr_vk_color_transform *transform = wl_container_of(a, transform, addon); return transform; } static void bind_pipeline(struct wlr_vk_render_pass *pass, VkPipeline pipeline) { if (pipeline == pass->bound_pipeline) { return; } vkCmdBindPipeline(pass->command_buffer->vk, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); pass->bound_pipeline = pipeline; } static void get_clip_region(struct wlr_vk_render_pass *pass, const pixman_region32_t *in, pixman_region32_t *out) { if (in != NULL) { pixman_region32_init(out); pixman_region32_copy(out, in); } else { struct wlr_buffer *buffer = pass->render_buffer->wlr_buffer; pixman_region32_init_rect(out, 0, 0, buffer->width, buffer->height); } } static void convert_pixman_box_to_vk_rect(const pixman_box32_t *box, VkRect2D *rect) { *rect = (VkRect2D){ .offset = { .x = box->x1, .y = box->y1 }, .extent = { .width = box->x2 - box->x1, .height = box->y2 - box->y1 }, }; } static float color_to_linear(float non_linear) { // See https://www.w3.org/Graphics/Color/srgb return (non_linear > 0.04045) ? pow((non_linear + 0.055) / 1.055, 2.4) : non_linear / 12.92; } static float color_to_linear_premult(float non_linear, float alpha) { return (alpha == 0) ? 0 : color_to_linear(non_linear / alpha) * alpha; } static void mat3_to_mat4(const float mat3[9], float mat4[4][4]) { memset(mat4, 0, sizeof(float) * 16); mat4[0][0] = mat3[0]; mat4[0][1] = mat3[1]; mat4[0][3] = mat3[2]; mat4[1][0] = mat3[3]; mat4[1][1] = mat3[4]; mat4[1][3] = mat3[5]; mat4[2][2] = 1.f; mat4[3][3] = 1.f; } static bool render_pass_submit(struct wlr_render_pass *wlr_pass) { struct wlr_vk_render_pass *pass = get_render_pass(wlr_pass); struct wlr_vk_renderer *renderer = pass->renderer; struct wlr_vk_command_buffer *render_cb = pass->command_buffer; struct wlr_vk_render_buffer *render_buffer = pass->render_buffer; struct wlr_vk_command_buffer *stage_cb = NULL; VkSemaphoreSubmitInfoKHR *render_wait = NULL; bool device_lost = false; if (pass->failed) { goto error; } if (vulkan_record_stage_cb(renderer) == VK_NULL_HANDLE) { goto error; } stage_cb = renderer->stage.cb; assert(stage_cb != NULL); renderer->stage.cb = NULL; if (!pass->srgb_pathway) { // Apply output shader to map blend image to actual output image vkCmdNextSubpass(render_cb->vk, VK_SUBPASS_CONTENTS_INLINE); int width = pass->render_buffer->wlr_buffer->width; int height = pass->render_buffer->wlr_buffer->height; float final_matrix[9] = { width, 0, -1, 0, height, -1, 0, 0, 0, }; struct wlr_vk_vert_pcr_data vert_pcr_data = { .uv_off = { 0, 0 }, .uv_size = { 1, 1 }, }; size_t dim = pass->color_transform ? pass->color_transform->lut3d.dim_len : 1; struct wlr_vk_frag_output_pcr_data frag_pcr_data = { .lut_3d_offset = 0.5f / dim, .lut_3d_scale = (float)(dim - 1) / dim, }; mat3_to_mat4(final_matrix, vert_pcr_data.mat4); if (pass->color_transform) { bind_pipeline(pass, render_buffer->plain.render_setup->output_pipe_lut3d); } else { bind_pipeline(pass, render_buffer->plain.render_setup->output_pipe_srgb); } vkCmdPushConstants(render_cb->vk, renderer->output_pipe_layout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(vert_pcr_data), &vert_pcr_data); vkCmdPushConstants(render_cb->vk, renderer->output_pipe_layout, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(vert_pcr_data), sizeof(frag_pcr_data), &frag_pcr_data); VkDescriptorSet lut_ds; if (pass->color_transform && pass->color_transform->type == COLOR_TRANSFORM_LUT_3D) { struct wlr_vk_color_transform *transform = get_color_transform(pass->color_transform, renderer); assert(transform); lut_ds = transform->lut_3d.ds; } else { lut_ds = renderer->output_ds_lut3d_dummy; } VkDescriptorSet ds[] = { render_buffer->plain.blend_descriptor_set, // set 0 lut_ds, // set 1 }; size_t ds_len = sizeof(ds) / sizeof(ds[0]); vkCmdBindDescriptorSets(render_cb->vk, VK_PIPELINE_BIND_POINT_GRAPHICS, renderer->output_pipe_layout, 0, ds_len, ds, 0, NULL); const pixman_region32_t *clip = rect_union_evaluate(&pass->updated_region); int clip_rects_len; const pixman_box32_t *clip_rects = pixman_region32_rectangles( clip, &clip_rects_len); for (int i = 0; i < clip_rects_len; i++) { VkRect2D rect; convert_pixman_box_to_vk_rect(&clip_rects[i], &rect); vkCmdSetScissor(render_cb->vk, 0, 1, &rect); vkCmdDraw(render_cb->vk, 4, 1, 0, 0); } } vkCmdEndRenderPass(render_cb->vk); // insert acquire and release barriers for dmabuf-images uint32_t barrier_count = wl_list_length(&renderer->foreign_textures) + 1; render_wait = calloc(barrier_count * WLR_DMABUF_MAX_PLANES, sizeof(*render_wait)); if (render_wait == NULL) { wlr_log_errno(WLR_ERROR, "Allocation failed"); goto error; } VkImageMemoryBarrier *acquire_barriers = calloc(barrier_count, sizeof(*acquire_barriers)); VkImageMemoryBarrier *release_barriers = calloc(barrier_count, sizeof(*release_barriers)); if (acquire_barriers == NULL || release_barriers == NULL) { wlr_log_errno(WLR_ERROR, "Allocation failed"); free(acquire_barriers); free(release_barriers); goto error; } struct wlr_vk_texture *texture, *tmp_tex; size_t idx = 0; uint32_t render_wait_len = 0; wl_list_for_each_safe(texture, tmp_tex, &renderer->foreign_textures, foreign_link) { VkImageLayout src_layout = VK_IMAGE_LAYOUT_GENERAL; if (!texture->transitioned) { src_layout = VK_IMAGE_LAYOUT_UNDEFINED; texture->transitioned = true; } // acquire acquire_barriers[idx] = (VkImageMemoryBarrier){ .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .srcQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT, .dstQueueFamilyIndex = renderer->dev->queue_family, .image = texture->image, .oldLayout = src_layout, .newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, .srcAccessMask = 0, // ignored anyways .dstAccessMask = VK_ACCESS_SHADER_READ_BIT, .subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .subresourceRange.layerCount = 1, .subresourceRange.levelCount = 1, }; // release release_barriers[idx] = (VkImageMemoryBarrier){ .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .srcQueueFamilyIndex = renderer->dev->queue_family, .dstQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT, .image = texture->image, .oldLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, .newLayout = VK_IMAGE_LAYOUT_GENERAL, .srcAccessMask = VK_ACCESS_SHADER_READ_BIT, .dstAccessMask = 0, // ignored anyways .subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .subresourceRange.layerCount = 1, .subresourceRange.levelCount = 1, }; ++idx; if (!vulkan_sync_foreign_texture(texture)) { wlr_log(WLR_ERROR, "Failed to wait for foreign texture DMA-BUF fence"); } else { for (size_t i = 0; i < WLR_DMABUF_MAX_PLANES; i++) { if (texture->foreign_semaphores[i] != VK_NULL_HANDLE) { assert(render_wait_len < barrier_count * WLR_DMABUF_MAX_PLANES); render_wait[render_wait_len++] = (VkSemaphoreSubmitInfoKHR){ .sType = VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO_KHR, .semaphore = texture->foreign_semaphores[i], .stageMask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT_KHR, }; } } } wl_list_remove(&texture->foreign_link); texture->owned = false; } // also add acquire/release barriers for the current render buffer VkImageLayout src_layout = VK_IMAGE_LAYOUT_GENERAL; if (pass->srgb_pathway) { if (!render_buffer->srgb.transitioned) { src_layout = VK_IMAGE_LAYOUT_PREINITIALIZED; render_buffer->srgb.transitioned = true; } } else { if (!render_buffer->plain.transitioned) { src_layout = VK_IMAGE_LAYOUT_PREINITIALIZED; render_buffer->plain.transitioned = true; } // The render pass changes the blend image layout from // color attachment to read only, so on each frame, before // the render pass starts, we change it back VkImageLayout blend_src_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; if (!render_buffer->plain.blend_transitioned) { blend_src_layout = VK_IMAGE_LAYOUT_UNDEFINED; render_buffer->plain.blend_transitioned = true; } VkImageMemoryBarrier blend_acq_barrier = { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, .image = render_buffer->plain.blend_image, .oldLayout = blend_src_layout, .newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, .srcAccessMask = VK_ACCESS_SHADER_READ_BIT, .dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .layerCount = 1, .levelCount = 1, }, }; vkCmdPipelineBarrier(stage_cb->vk, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, NULL, 0, NULL, 1, &blend_acq_barrier); } // acquire render buffer before rendering acquire_barriers[idx] = (VkImageMemoryBarrier){ .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .srcQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT, .dstQueueFamilyIndex = renderer->dev->queue_family, .image = render_buffer->image, .oldLayout = src_layout, .newLayout = VK_IMAGE_LAYOUT_GENERAL, .srcAccessMask = 0, // ignored anyways .dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, .subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .subresourceRange.layerCount = 1, .subresourceRange.levelCount = 1, }; // release render buffer after rendering release_barriers[idx] = (VkImageMemoryBarrier){ .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .srcQueueFamilyIndex = renderer->dev->queue_family, .dstQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT, .image = render_buffer->image, .oldLayout = VK_IMAGE_LAYOUT_GENERAL, .newLayout = VK_IMAGE_LAYOUT_GENERAL, .srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, .dstAccessMask = 0, // ignored anyways .subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .subresourceRange.layerCount = 1, .subresourceRange.levelCount = 1, }; ++idx; vkCmdPipelineBarrier(stage_cb->vk, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, NULL, 0, NULL, barrier_count, acquire_barriers); vkCmdPipelineBarrier(render_cb->vk, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, NULL, 0, NULL, barrier_count, release_barriers); free(acquire_barriers); free(release_barriers); // No semaphores needed here. // We don't need a semaphore from the stage/transfer submission // to the render submissions since they are on the same queue // and we have a renderpass dependency for that. uint64_t stage_timeline_point = vulkan_end_command_buffer(stage_cb, renderer); if (stage_timeline_point == 0) { goto error; } VkCommandBufferSubmitInfoKHR stage_cb_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_SUBMIT_INFO_KHR, .commandBuffer = stage_cb->vk, }; VkSemaphoreSubmitInfoKHR stage_signal = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO_KHR, .semaphore = renderer->timeline_semaphore, .value = stage_timeline_point, }; VkSubmitInfo2KHR stage_submit = { .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO_2_KHR, .commandBufferInfoCount = 1, .pCommandBufferInfos = &stage_cb_info, .signalSemaphoreInfoCount = 1, .pSignalSemaphoreInfos = &stage_signal, }; VkSemaphoreSubmitInfoKHR stage_wait; if (renderer->stage.last_timeline_point > 0) { stage_wait = (VkSemaphoreSubmitInfoKHR){ .sType = VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO_KHR, .semaphore = renderer->timeline_semaphore, .value = renderer->stage.last_timeline_point, .stageMask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT_KHR, }; stage_submit.waitSemaphoreInfoCount = 1; stage_submit.pWaitSemaphoreInfos = &stage_wait; } renderer->stage.last_timeline_point = stage_timeline_point; uint64_t render_timeline_point = vulkan_end_command_buffer(render_cb, renderer); if (render_timeline_point == 0) { goto error; } uint32_t render_signal_len = 1; VkSemaphoreSubmitInfoKHR render_signal[2] = {0}; render_signal[0] = (VkSemaphoreSubmitInfoKHR){ .sType = VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO_KHR, .semaphore = renderer->timeline_semaphore, .value = render_timeline_point, }; if (renderer->dev->implicit_sync_interop) { if (render_cb->binary_semaphore == VK_NULL_HANDLE) { VkExportSemaphoreCreateInfo export_info = { .sType = VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO, .handleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT, }; VkSemaphoreCreateInfo semaphore_info = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, .pNext = &export_info, }; VkResult res = vkCreateSemaphore(renderer->dev->dev, &semaphore_info, NULL, &render_cb->binary_semaphore); if (res != VK_SUCCESS) { wlr_vk_error("vkCreateSemaphore", res); goto error; } } render_signal[render_signal_len++] = (VkSemaphoreSubmitInfoKHR){ .sType = VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO_KHR, .semaphore = render_cb->binary_semaphore, }; } VkCommandBufferSubmitInfoKHR render_cb_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_SUBMIT_INFO_KHR, .commandBuffer = render_cb->vk, }; VkSubmitInfo2KHR render_submit = { .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO_2_KHR, .waitSemaphoreInfoCount = render_wait_len, .pWaitSemaphoreInfos = render_wait, .commandBufferInfoCount = 1, .pCommandBufferInfos = &render_cb_info, .signalSemaphoreInfoCount = render_signal_len, .pSignalSemaphoreInfos = render_signal, }; VkSubmitInfo2KHR submit_info[] = { stage_submit, render_submit }; VkResult res = renderer->dev->api.vkQueueSubmit2KHR(renderer->dev->queue, 2, submit_info, VK_NULL_HANDLE); if (res != VK_SUCCESS) { device_lost = res == VK_ERROR_DEVICE_LOST; wlr_vk_error("vkQueueSubmit", res); goto error; } free(render_wait); struct wlr_vk_shared_buffer *stage_buf, *stage_buf_tmp; wl_list_for_each_safe(stage_buf, stage_buf_tmp, &renderer->stage.buffers, link) { if (stage_buf->allocs.size == 0) { continue; } wl_list_remove(&stage_buf->link); wl_list_insert(&stage_cb->stage_buffers, &stage_buf->link); } if (!vulkan_sync_render_buffer(renderer, render_buffer, render_cb)) { wlr_log(WLR_ERROR, "Failed to sync render buffer"); } wlr_buffer_unlock(render_buffer->wlr_buffer); rect_union_finish(&pass->updated_region); free(pass); return true; error: free(render_wait); vulkan_reset_command_buffer(stage_cb); vulkan_reset_command_buffer(render_cb); wlr_buffer_unlock(render_buffer->wlr_buffer); rect_union_finish(&pass->updated_region); free(pass); if (device_lost) { wl_signal_emit_mutable(&renderer->wlr_renderer.events.lost, NULL); } return false; } static void render_pass_mark_box_updated(struct wlr_vk_render_pass *pass, const struct wlr_box *box) { if (pass->srgb_pathway) { return; } pixman_box32_t pixman_box = { .x1 = box->x, .x2 = box->x + box->width, .y1 = box->y, .y2 = box->y + box->height, }; rect_union_add(&pass->updated_region, pixman_box); } static void render_pass_add_rect(struct wlr_render_pass *wlr_pass, const struct wlr_render_rect_options *options) { struct wlr_vk_render_pass *pass = get_render_pass(wlr_pass); VkCommandBuffer cb = pass->command_buffer->vk; // Input color values are given in sRGB space, shader expects // them in linear space. The shader does all computation in linear // space and expects in inputs in linear space since it outputs // colors in linear space as well (and vulkan then automatically // does the conversion for out sRGB render targets). float linear_color[] = { color_to_linear_premult(options->color.r, options->color.a), color_to_linear_premult(options->color.g, options->color.a), color_to_linear_premult(options->color.b, options->color.a), options->color.a, // no conversion for alpha }; pixman_region32_t clip; get_clip_region(pass, options->clip, &clip); int clip_rects_len; const pixman_box32_t *clip_rects = pixman_region32_rectangles(&clip, &clip_rects_len); // Record regions possibly updated for use in second subpass for (int i = 0; i < clip_rects_len; i++) { struct wlr_box clip_box = { .x = clip_rects[i].x1, .y = clip_rects[i].y1, .width = clip_rects[i].x2 - clip_rects[i].x1, .height = clip_rects[i].y2 - clip_rects[i].y1, }; struct wlr_box intersection; if (!wlr_box_intersection(&intersection, &options->box, &clip_box)) { continue; } render_pass_mark_box_updated(pass, &intersection); } struct wlr_box box; wlr_render_rect_options_get_box(options, pass->render_buffer->wlr_buffer, &box); switch (options->blend_mode) { case WLR_RENDER_BLEND_MODE_PREMULTIPLIED:; float proj[9], matrix[9]; wlr_matrix_identity(proj); wlr_matrix_project_box(matrix, &box, WL_OUTPUT_TRANSFORM_NORMAL, 0, proj); wlr_matrix_multiply(matrix, pass->projection, matrix); struct wlr_vk_render_format_setup *setup = pass->srgb_pathway ? pass->render_buffer->srgb.render_setup : pass->render_buffer->plain.render_setup; struct wlr_vk_pipeline *pipe = setup_get_or_create_pipeline( setup, &(struct wlr_vk_pipeline_key) { .source = WLR_VK_SHADER_SOURCE_SINGLE_COLOR, .layout = { .ycbcr_format = NULL }, }); if (!pipe) { pass->failed = true; break; } struct wlr_vk_vert_pcr_data vert_pcr_data = { .uv_off = { 0, 0 }, .uv_size = { 1, 1 }, }; mat3_to_mat4(matrix, vert_pcr_data.mat4); bind_pipeline(pass, pipe->vk); vkCmdPushConstants(cb, pipe->layout->vk, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(vert_pcr_data), &vert_pcr_data); vkCmdPushConstants(cb, pipe->layout->vk, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(vert_pcr_data), sizeof(float) * 4, linear_color); for (int i = 0; i < clip_rects_len; i++) { VkRect2D rect; convert_pixman_box_to_vk_rect(&clip_rects[i], &rect); vkCmdSetScissor(cb, 0, 1, &rect); vkCmdDraw(cb, 4, 1, 0, 0); } break; case WLR_RENDER_BLEND_MODE_NONE:; VkClearAttachment clear_att = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .colorAttachment = 0, .clearValue.color.float32 = { linear_color[0], linear_color[1], linear_color[2], linear_color[3], }, }; VkClearRect clear_rect = { .rect = { .offset = { box.x, box.y }, .extent = { box.width, box.height }, }, .layerCount = 1, }; for (int i = 0; i < clip_rects_len; i++) { VkRect2D rect; convert_pixman_box_to_vk_rect(&clip_rects[i], &rect); vkCmdSetScissor(cb, 0, 1, &rect); vkCmdClearAttachments(cb, 1, &clear_att, 1, &clear_rect); } break; } pixman_region32_fini(&clip); } static void render_pass_add_texture(struct wlr_render_pass *wlr_pass, const struct wlr_render_texture_options *options) { struct wlr_vk_render_pass *pass = get_render_pass(wlr_pass); struct wlr_vk_renderer *renderer = pass->renderer; VkCommandBuffer cb = pass->command_buffer->vk; struct wlr_vk_texture *texture = vulkan_get_texture(options->texture); assert(texture->renderer == renderer); if (texture->dmabuf_imported && !texture->owned) { // Store this texture in the list of textures that need to be // acquired before rendering and released after rendering. // We don't do it here immediately since barriers inside // a renderpass are suboptimal (would require additional renderpass // dependency and potentially multiple barriers) and it's // better to issue one barrier for all used textures anyways. texture->owned = true; assert(texture->foreign_link.prev == NULL); assert(texture->foreign_link.next == NULL); wl_list_insert(&renderer->foreign_textures, &texture->foreign_link); } struct wlr_fbox src_box; wlr_render_texture_options_get_src_box(options, &src_box); struct wlr_box dst_box; wlr_render_texture_options_get_dst_box(options, &dst_box); float alpha = wlr_render_texture_options_get_alpha(options); float proj[9], matrix[9]; wlr_matrix_identity(proj); wlr_matrix_project_box(matrix, &dst_box, options->transform, 0, proj); wlr_matrix_multiply(matrix, pass->projection, matrix); struct wlr_vk_vert_pcr_data vert_pcr_data = { .uv_off = { src_box.x / options->texture->width, src_box.y / options->texture->height, }, .uv_size = { src_box.width / options->texture->width, src_box.height / options->texture->height, }, }; mat3_to_mat4(matrix, vert_pcr_data.mat4); struct wlr_vk_render_format_setup *setup = pass->srgb_pathway ? pass->render_buffer->srgb.render_setup : pass->render_buffer->plain.render_setup; struct wlr_vk_pipeline *pipe = setup_get_or_create_pipeline( setup, &(struct wlr_vk_pipeline_key) { .source = WLR_VK_SHADER_SOURCE_TEXTURE, .layout = { .ycbcr_format = texture->format->is_ycbcr ? texture->format : NULL, .filter_mode = options->filter_mode, }, .texture_transform = texture->transform, .blend_mode = !texture->has_alpha && alpha == 1.0 ? WLR_RENDER_BLEND_MODE_NONE : options->blend_mode, }); if (!pipe) { pass->failed = true; return; } struct wlr_vk_texture_view *view = vulkan_texture_get_or_create_view(texture, pipe->layout); if (!view) { pass->failed = true; return; } bind_pipeline(pass, pipe->vk); vkCmdBindDescriptorSets(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe->layout->vk, 0, 1, &view->ds, 0, NULL); vkCmdPushConstants(cb, pipe->layout->vk, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(vert_pcr_data), &vert_pcr_data); vkCmdPushConstants(cb, pipe->layout->vk, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(vert_pcr_data), sizeof(float), &alpha); pixman_region32_t clip; get_clip_region(pass, options->clip, &clip); int clip_rects_len; const pixman_box32_t *clip_rects = pixman_region32_rectangles(&clip, &clip_rects_len); for (int i = 0; i < clip_rects_len; i++) { VkRect2D rect; convert_pixman_box_to_vk_rect(&clip_rects[i], &rect); vkCmdSetScissor(cb, 0, 1, &rect); vkCmdDraw(cb, 4, 1, 0, 0); struct wlr_box clip_box = { .x = clip_rects[i].x1, .y = clip_rects[i].y1, .width = clip_rects[i].x2 - clip_rects[i].x1, .height = clip_rects[i].y2 - clip_rects[i].y1, }; struct wlr_box intersection; if (!wlr_box_intersection(&intersection, &dst_box, &clip_box)) { continue; } render_pass_mark_box_updated(pass, &intersection); } texture->last_used_cb = pass->command_buffer; pixman_region32_fini(&clip); } static const struct wlr_render_pass_impl render_pass_impl = { .submit = render_pass_submit, .add_rect = render_pass_add_rect, .add_texture = render_pass_add_texture, }; void vk_color_transform_destroy(struct wlr_addon *addon) { struct wlr_vk_renderer *renderer = (struct wlr_vk_renderer *)addon->owner; struct wlr_vk_color_transform *transform = wl_container_of(addon, transform, addon); VkDevice dev = renderer->dev->dev; if (transform->lut_3d.image) { vkDestroyImage(dev, transform->lut_3d.image, NULL); vkDestroyImageView(dev, transform->lut_3d.image_view, NULL); vkFreeMemory(dev, transform->lut_3d.memory, NULL); vulkan_free_ds(renderer, transform->lut_3d.ds_pool, transform->lut_3d.ds); } wl_list_remove(&transform->link); wlr_addon_finish(&transform->addon); free(transform); } static bool create_3d_lut_image(struct wlr_vk_renderer *renderer, const struct wlr_color_transform_lut3d *lut_3d, VkImage *image, VkImageView *image_view, VkDeviceMemory *memory, VkDescriptorSet *ds, struct wlr_vk_descriptor_pool **ds_pool) { VkDevice dev = renderer->dev->dev; VkResult res; *image = VK_NULL_HANDLE; *memory = VK_NULL_HANDLE; *image_view = VK_NULL_HANDLE; *ds = VK_NULL_HANDLE; *ds_pool = NULL; // R32G32B32 is not a required Vulkan format // TODO: use it when available VkFormat format = VK_FORMAT_R32G32B32A32_SFLOAT; VkImageCreateInfo img_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .imageType = VK_IMAGE_TYPE_3D, .format = format, .mipLevels = 1, .arrayLayers = 1, .samples = VK_SAMPLE_COUNT_1_BIT, .sharingMode = VK_SHARING_MODE_EXCLUSIVE, .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, .extent = (VkExtent3D) { lut_3d->dim_len, lut_3d->dim_len, lut_3d->dim_len }, .tiling = VK_IMAGE_TILING_OPTIMAL, .usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, }; res = vkCreateImage(dev, &img_info, NULL, image); if (res != VK_SUCCESS) { wlr_vk_error("vkCreateImage failed", res); return NULL; } VkMemoryRequirements mem_reqs = {0}; vkGetImageMemoryRequirements(dev, *image, &mem_reqs); int mem_type_index = vulkan_find_mem_type(renderer->dev, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, mem_reqs.memoryTypeBits); if (mem_type_index == -1) { wlr_log(WLR_ERROR, "Failed to find suitable memory type"); goto fail_image; } VkMemoryAllocateInfo mem_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, .allocationSize = mem_reqs.size, .memoryTypeIndex = mem_type_index, }; res = vkAllocateMemory(dev, &mem_info, NULL, memory); if (res != VK_SUCCESS) { wlr_vk_error("vkAllocateMemory failed", res); goto fail_image; } res = vkBindImageMemory(dev, *image, *memory, 0); if (res != VK_SUCCESS) { wlr_vk_error("vkBindMemory failed", res); goto fail_memory; } VkImageViewCreateInfo view_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .viewType = VK_IMAGE_VIEW_TYPE_3D, .format = format, .components.r = VK_COMPONENT_SWIZZLE_IDENTITY, .components.g = VK_COMPONENT_SWIZZLE_IDENTITY, .components.b = VK_COMPONENT_SWIZZLE_IDENTITY, .components.a = VK_COMPONENT_SWIZZLE_IDENTITY, .subresourceRange = (VkImageSubresourceRange) { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1, }, .image = *image, }; res = vkCreateImageView(dev, &view_info, NULL, image_view); if (res != VK_SUCCESS) { wlr_vk_error("vkCreateImageView failed", res); goto fail_image; } size_t bytes_per_block = 4 * sizeof(float); size_t size = lut_3d->dim_len * lut_3d->dim_len * lut_3d->dim_len * bytes_per_block; struct wlr_vk_buffer_span span = vulkan_get_stage_span(renderer, size, bytes_per_block); if (!span.buffer || span.alloc.size != size) { wlr_log(WLR_ERROR, "Failed to retrieve staging buffer"); goto fail_imageview; } void *data; res = vkMapMemory(dev, span.buffer->memory, span.alloc.start, size, 0, &data); if (res != VK_SUCCESS) { wlr_vk_error("vkMapMemory", res); goto fail_imageview; } float *dst = data; size_t dim_len = lut_3d->dim_len; for (size_t b_index = 0; b_index < dim_len; b_index++) { for (size_t g_index = 0; g_index < dim_len; g_index++) { for (size_t r_index = 0; r_index < dim_len; r_index++) { size_t sample_index = r_index + dim_len * g_index + dim_len * dim_len * b_index; size_t src_offset = 3 * sample_index; size_t dst_offset = 4 * sample_index; dst[dst_offset] = lut_3d->lut_3d[src_offset]; dst[dst_offset + 1] = lut_3d->lut_3d[src_offset + 1]; dst[dst_offset + 2] = lut_3d->lut_3d[src_offset + 2]; dst[dst_offset + 3] = 1.0; } } } vkUnmapMemory(dev, span.buffer->memory); VkCommandBuffer cb = vulkan_record_stage_cb(renderer); vulkan_change_layout(cb, *image, VK_IMAGE_LAYOUT_UNDEFINED, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_ACCESS_TRANSFER_WRITE_BIT); VkBufferImageCopy copy = { .bufferOffset = span.alloc.start, .imageExtent.width = lut_3d->dim_len, .imageExtent.height = lut_3d->dim_len, .imageExtent.depth = lut_3d->dim_len, .imageSubresource.layerCount = 1, .imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, }; vkCmdCopyBufferToImage(cb, span.buffer->buffer, *image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©); vulkan_change_layout(cb, *image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_ACCESS_SHADER_READ_BIT); *ds_pool = vulkan_alloc_texture_ds(renderer, renderer->output_ds_lut3d_layout, ds); if (!*ds_pool) { wlr_log(WLR_ERROR, "Failed to allocate descriptor"); goto fail_imageview; } VkDescriptorImageInfo ds_img_info = { .imageView = *image_view, .imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, }; VkWriteDescriptorSet ds_write = { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .dstSet = *ds, .pImageInfo = &ds_img_info, }; vkUpdateDescriptorSets(dev, 1, &ds_write, 0, NULL); return true; fail_imageview: vkDestroyImageView(dev, *image_view, NULL); fail_memory: vkFreeMemory(dev, *memory, NULL); fail_image: vkDestroyImage(dev, *image, NULL); return false; } static struct wlr_vk_color_transform *vk_color_transform_create( struct wlr_vk_renderer *renderer, struct wlr_color_transform *transform) { struct wlr_vk_color_transform *vk_transform = calloc(1, sizeof(*vk_transform)); if (!vk_transform) { return NULL; } if (transform->type == COLOR_TRANSFORM_LUT_3D) { if (!create_3d_lut_image(renderer, &transform->lut3d, &vk_transform->lut_3d.image, &vk_transform->lut_3d.image_view, &vk_transform->lut_3d.memory, &vk_transform->lut_3d.ds, &vk_transform->lut_3d.ds_pool)) { free(vk_transform); return NULL; } } wlr_addon_init(&vk_transform->addon, &transform->addons, renderer, &vk_color_transform_impl); wl_list_insert(&renderer->color_transforms, &vk_transform->link); return vk_transform; } static const struct wlr_addon_interface vk_color_transform_impl = { "vk_color_transform", .destroy = vk_color_transform_destroy, }; struct wlr_vk_render_pass *vulkan_begin_render_pass(struct wlr_vk_renderer *renderer, struct wlr_vk_render_buffer *buffer, const struct wlr_buffer_pass_options *options) { bool using_srgb_pathway; if (options != NULL && options->color_transform != NULL) { using_srgb_pathway = false; if (!get_color_transform(options->color_transform, renderer)) { /* Try to create a new color transform */ if (!vk_color_transform_create(renderer, options->color_transform)) { wlr_log(WLR_ERROR, "Failed to create color transform"); return NULL; } } } else { // Use srgb pathway if it is the default/has already been set up using_srgb_pathway = buffer->srgb.framebuffer != VK_NULL_HANDLE; } if (!using_srgb_pathway && !buffer->plain.image_view) { struct wlr_dmabuf_attributes attribs; wlr_buffer_get_dmabuf(buffer->wlr_buffer, &attribs); if (!vulkan_setup_plain_framebuffer(buffer, &attribs)) { wlr_log(WLR_ERROR, "Failed to set up blend image"); return NULL; } } struct wlr_vk_render_pass *pass = calloc(1, sizeof(*pass)); if (pass == NULL) { return NULL; } wlr_render_pass_init(&pass->base, &render_pass_impl); pass->renderer = renderer; pass->srgb_pathway = using_srgb_pathway; if (options != NULL && options->color_transform != NULL) { wlr_color_transform_ref(options->color_transform); pass->color_transform = options->color_transform; } rect_union_init(&pass->updated_region); struct wlr_vk_command_buffer *cb = vulkan_acquire_command_buffer(renderer); if (cb == NULL) { free(pass); return NULL; } VkCommandBufferBeginInfo begin_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, }; VkResult res = vkBeginCommandBuffer(cb->vk, &begin_info); if (res != VK_SUCCESS) { wlr_vk_error("vkBeginCommandBuffer", res); vulkan_reset_command_buffer(cb); free(pass); return NULL; } if (!renderer->dummy3d_image_transitioned) { renderer->dummy3d_image_transitioned = true; vulkan_change_layout(cb->vk, renderer->dummy3d_image, VK_IMAGE_LAYOUT_UNDEFINED, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_ACCESS_SHADER_READ_BIT); } int width = buffer->wlr_buffer->width; int height = buffer->wlr_buffer->height; VkRect2D rect = { .extent = { width, height } }; VkRenderPassBeginInfo rp_info = { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderArea = rect, .clearValueCount = 0, }; if (pass->srgb_pathway) { rp_info.renderPass = buffer->srgb.render_setup->render_pass; rp_info.framebuffer = buffer->srgb.framebuffer; } else { rp_info.renderPass = buffer->plain.render_setup->render_pass; rp_info.framebuffer = buffer->plain.framebuffer; } vkCmdBeginRenderPass(cb->vk, &rp_info, VK_SUBPASS_CONTENTS_INLINE); vkCmdSetViewport(cb->vk, 0, 1, &(VkViewport){ .width = width, .height = height, .maxDepth = 1, }); // matrix_projection() assumes a GL coordinate system so we need // to pass WL_OUTPUT_TRANSFORM_FLIPPED_180 to adjust it for vulkan. matrix_projection(pass->projection, width, height, WL_OUTPUT_TRANSFORM_FLIPPED_180); wlr_buffer_lock(buffer->wlr_buffer); pass->render_buffer = buffer; pass->command_buffer = cb; return pass; }