#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* For brevity's sake, struct members are annotated where they are used. */ enum tinywl_cursor_mode { TINYWL_CURSOR_PASSTHROUGH, TINYWL_CURSOR_MOVE, TINYWL_CURSOR_RESIZE, }; struct tinywl_server { struct wl_display *wl_display; struct wlr_backend *backend; struct wlr_renderer *renderer; struct wlr_allocator *allocator; struct wlr_scene *scene; struct wlr_scene_output_layout *scene_layout; struct wlr_xdg_shell *xdg_shell; struct wl_listener new_xdg_toplevel; struct wl_listener new_xdg_popup; struct wl_list toplevels; struct wlr_cursor *cursor; struct wlr_xcursor_manager *cursor_mgr; struct wl_listener cursor_motion; struct wl_listener cursor_motion_absolute; struct wl_listener cursor_button; struct wl_listener cursor_axis; struct wl_listener cursor_frame; struct wlr_seat *seat; struct wl_listener new_input; struct wl_listener request_cursor; struct wl_listener request_set_selection; struct wl_list keyboards; enum tinywl_cursor_mode cursor_mode; struct tinywl_toplevel *grabbed_toplevel; double grab_x, grab_y; struct wlr_box grab_geobox; uint32_t resize_edges; struct wlr_output_layout *output_layout; struct wl_list outputs; struct wl_listener new_output; }; struct tinywl_output { struct wl_list link; struct tinywl_server *server; struct wlr_output *wlr_output; struct wl_listener frame; struct wl_listener request_state; struct wl_listener destroy; }; struct tinywl_toplevel { struct wl_list link; struct tinywl_server *server; struct wlr_xdg_toplevel *xdg_toplevel; struct wlr_scene_tree *scene_tree; struct wl_listener map; struct wl_listener unmap; struct wl_listener commit; struct wl_listener destroy; struct wl_listener request_move; struct wl_listener request_resize; struct wl_listener request_maximize; struct wl_listener request_fullscreen; }; struct tinywl_popup { struct wlr_xdg_popup *xdg_popup; struct wl_listener commit; struct wl_listener destroy; }; struct tinywl_keyboard { struct wl_list link; struct tinywl_server *server; struct wlr_keyboard *wlr_keyboard; struct wl_listener modifiers; struct wl_listener key; struct wl_listener destroy; }; static void focus_toplevel(struct tinywl_toplevel *toplevel, struct wlr_surface *surface) { /* Note: this function only deals with keyboard focus. */ if (toplevel == NULL) { return; } struct tinywl_server *server = toplevel->server; struct wlr_seat *seat = server->seat; struct wlr_surface *prev_surface = seat->keyboard_state.focused_surface; if (prev_surface == surface) { /* Don't re-focus an already focused surface. */ return; } if (prev_surface) { /* * Deactivate the previously focused surface. This lets the client know * it no longer has focus and the client will repaint accordingly, e.g. * stop displaying a caret. */ struct wlr_xdg_toplevel *prev_toplevel = wlr_xdg_toplevel_try_from_wlr_surface(prev_surface); if (prev_toplevel != NULL) { wlr_xdg_toplevel_set_activated(prev_toplevel, false); } } struct wlr_keyboard *keyboard = wlr_seat_get_keyboard(seat); /* Move the toplevel to the front */ wlr_scene_node_raise_to_top(&toplevel->scene_tree->node); wl_list_remove(&toplevel->link); wl_list_insert(&server->toplevels, &toplevel->link); /* Activate the new surface */ wlr_xdg_toplevel_set_activated(toplevel->xdg_toplevel, true); /* * Tell the seat to have the keyboard enter this surface. wlroots will keep * track of this and automatically send key events to the appropriate * clients without additional work on your part. */ if (keyboard != NULL) { wlr_seat_keyboard_notify_enter(seat, toplevel->xdg_toplevel->base->surface, keyboard->keycodes, keyboard->num_keycodes, &keyboard->modifiers); } } static void keyboard_handle_modifiers( struct wl_listener *listener, void *data) { /* This event is raised when a modifier key, such as shift or alt, is * pressed. We simply communicate this to the client. */ struct tinywl_keyboard *keyboard = wl_container_of(listener, keyboard, modifiers); /* * A seat can only have one keyboard, but this is a limitation of the * Wayland protocol - not wlroots. We assign all connected keyboards to the * same seat. You can swap out the underlying wlr_keyboard like this and * wlr_seat handles this transparently. */ wlr_seat_set_keyboard(keyboard->server->seat, keyboard->wlr_keyboard); /* Send modifiers to the client. */ wlr_seat_keyboard_notify_modifiers(keyboard->server->seat, &keyboard->wlr_keyboard->modifiers); } static bool handle_keybinding(struct tinywl_server *server, xkb_keysym_t sym) { /* * Here we handle compositor keybindings. This is when the compositor is * processing keys, rather than passing them on to the client for its own * processing. * * This function assumes Alt is held down. */ switch (sym) { case XKB_KEY_Escape: wl_display_terminate(server->wl_display); break; case XKB_KEY_F1: /* Cycle to the next toplevel */ if (wl_list_length(&server->toplevels) < 2) { break; } struct tinywl_toplevel *next_toplevel = wl_container_of(server->toplevels.prev, next_toplevel, link); focus_toplevel(next_toplevel, next_toplevel->xdg_toplevel->base->surface); break; default: return false; } return true; } static void keyboard_handle_key( struct wl_listener *listener, void *data) { /* This event is raised when a key is pressed or released. */ struct tinywl_keyboard *keyboard = wl_container_of(listener, keyboard, key); struct tinywl_server *server = keyboard->server; struct wlr_keyboard_key_event *event = data; struct wlr_seat *seat = server->seat; /* Translate libinput keycode -> xkbcommon */ uint32_t keycode = event->keycode + 8; /* Get a list of keysyms based on the keymap for this keyboard */ const xkb_keysym_t *syms; int nsyms = xkb_state_key_get_syms( keyboard->wlr_keyboard->xkb_state, keycode, &syms); bool handled = false; uint32_t modifiers = wlr_keyboard_get_modifiers(keyboard->wlr_keyboard); if ((modifiers & WLR_MODIFIER_ALT) && event->state == WL_KEYBOARD_KEY_STATE_PRESSED) { /* If alt is held down and this button was _pressed_, we attempt to * process it as a compositor keybinding. */ for (int i = 0; i < nsyms; i++) { handled = handle_keybinding(server, syms[i]); } } if (!handled) { /* Otherwise, we pass it along to the client. */ wlr_seat_set_keyboard(seat, keyboard->wlr_keyboard); wlr_seat_keyboard_notify_key(seat, event->time_msec, event->keycode, event->state); } } static void keyboard_handle_destroy(struct wl_listener *listener, void *data) { /* This event is raised by the keyboard base wlr_input_device to signal * the destruction of the wlr_keyboard. It will no longer receive events * and should be destroyed. */ struct tinywl_keyboard *keyboard = wl_container_of(listener, keyboard, destroy); wl_list_remove(&keyboard->modifiers.link); wl_list_remove(&keyboard->key.link); wl_list_remove(&keyboard->destroy.link); wl_list_remove(&keyboard->link); free(keyboard); } static void server_new_keyboard(struct tinywl_server *server, struct wlr_input_device *device) { struct wlr_keyboard *wlr_keyboard = wlr_keyboard_from_input_device(device); struct tinywl_keyboard *keyboard = calloc(1, sizeof(*keyboard)); keyboard->server = server; keyboard->wlr_keyboard = wlr_keyboard; /* We need to prepare an XKB keymap and assign it to the keyboard. This * assumes the defaults (e.g. layout = "us"). */ struct xkb_context *context = xkb_context_new(XKB_CONTEXT_NO_FLAGS); struct xkb_keymap *keymap = xkb_keymap_new_from_names(context, NULL, XKB_KEYMAP_COMPILE_NO_FLAGS); wlr_keyboard_set_keymap(wlr_keyboard, keymap); xkb_keymap_unref(keymap); xkb_context_unref(context); wlr_keyboard_set_repeat_info(wlr_keyboard, 25, 600); /* Here we set up listeners for keyboard events. */ keyboard->modifiers.notify = keyboard_handle_modifiers; wl_signal_add(&wlr_keyboard->events.modifiers, &keyboard->modifiers); keyboard->key.notify = keyboard_handle_key; wl_signal_add(&wlr_keyboard->events.key, &keyboard->key); keyboard->destroy.notify = keyboard_handle_destroy; wl_signal_add(&device->events.destroy, &keyboard->destroy); wlr_seat_set_keyboard(server->seat, keyboard->wlr_keyboard); /* And add the keyboard to our list of keyboards */ wl_list_insert(&server->keyboards, &keyboard->link); } static void server_new_pointer(struct tinywl_server *server, struct wlr_input_device *device) { /* We don't do anything special with pointers. All of our pointer handling * is proxied through wlr_cursor. On another compositor, you might take this * opportunity to do libinput configuration on the device to set * acceleration, etc. */ wlr_cursor_attach_input_device(server->cursor, device); } static void server_new_input(struct wl_listener *listener, void *data) { /* This event is raised by the backend when a new input device becomes * available. */ struct tinywl_server *server = wl_container_of(listener, server, new_input); struct wlr_input_device *device = data; switch (device->type) { case WLR_INPUT_DEVICE_KEYBOARD: server_new_keyboard(server, device); break; case WLR_INPUT_DEVICE_POINTER: server_new_pointer(server, device); break; default: break; } /* We need to let the wlr_seat know what our capabilities are, which is * communiciated to the client. In TinyWL we always have a cursor, even if * there are no pointer devices, so we always include that capability. */ uint32_t caps = WL_SEAT_CAPABILITY_POINTER; if (!wl_list_empty(&server->keyboards)) { caps |= WL_SEAT_CAPABILITY_KEYBOARD; } wlr_seat_set_capabilities(server->seat, caps); } static void seat_request_cursor(struct wl_listener *listener, void *data) { struct tinywl_server *server = wl_container_of( listener, server, request_cursor); /* This event is raised by the seat when a client provides a cursor image */ struct wlr_seat_pointer_request_set_cursor_event *event = data; struct wlr_seat_client *focused_client = server->seat->pointer_state.focused_client; /* This can be sent by any client, so we check to make sure this one is * actually has pointer focus first. */ if (focused_client == event->seat_client) { /* Once we've vetted the client, we can tell the cursor to use the * provided surface as the cursor image. It will set the hardware cursor * on the output that it's currently on and continue to do so as the * cursor moves between outputs. */ wlr_cursor_set_surface(server->cursor, event->surface, event->hotspot_x, event->hotspot_y); } } static void seat_request_set_selection(struct wl_listener *listener, void *data) { /* This event is raised by the seat when a client wants to set the selection, * usually when the user copies something. wlroots allows compositors to * ignore such requests if they so choose, but in tinywl we always honor */ struct tinywl_server *server = wl_container_of( listener, server, request_set_selection); struct wlr_seat_request_set_selection_event *event = data; wlr_seat_set_selection(server->seat, event->source, event->serial); } static struct tinywl_toplevel *desktop_toplevel_at( struct tinywl_server *server, double lx, double ly, struct wlr_surface **surface, double *sx, double *sy) { /* This returns the topmost node in the scene at the given layout coords. * We only care about surface nodes as we are specifically looking for a * surface in the surface tree of a tinywl_toplevel. */ struct wlr_scene_node *node = wlr_scene_node_at( &server->scene->tree.node, lx, ly, sx, sy); if (node == NULL || node->type != WLR_SCENE_NODE_BUFFER) { return NULL; } struct wlr_scene_buffer *scene_buffer = wlr_scene_buffer_from_node(node); struct wlr_scene_surface *scene_surface = wlr_scene_surface_try_from_buffer(scene_buffer); if (!scene_surface) { return NULL; } *surface = scene_surface->surface; /* Find the node corresponding to the tinywl_toplevel at the root of this * surface tree, it is the only one for which we set the data field. */ struct wlr_scene_tree *tree = node->parent; while (tree != NULL && tree->node.data == NULL) { tree = tree->node.parent; } return tree->node.data; } static void reset_cursor_mode(struct tinywl_server *server) { /* Reset the cursor mode to passthrough. */ server->cursor_mode = TINYWL_CURSOR_PASSTHROUGH; server->grabbed_toplevel = NULL; } static void process_cursor_move(struct tinywl_server *server, uint32_t time) { /* Move the grabbed toplevel to the new position. */ struct tinywl_toplevel *toplevel = server->grabbed_toplevel; wlr_scene_node_set_position(&toplevel->scene_tree->node, server->cursor->x - server->grab_x, server->cursor->y - server->grab_y); } static void process_cursor_resize(struct tinywl_server *server, uint32_t time) { /* * Resizing the grabbed toplevel can be a little bit complicated, because we * could be resizing from any corner or edge. This not only resizes the * toplevel on one or two axes, but can also move the toplevel if you resize * from the top or left edges (or top-left corner). * * Note that some shortcuts are taken here. In a more fleshed-out * compositor, you'd wait for the client to prepare a buffer at the new * size, then commit any movement that was prepared. */ struct tinywl_toplevel *toplevel = server->grabbed_toplevel; double border_x = server->cursor->x - server->grab_x; double border_y = server->cursor->y - server->grab_y; int new_left = server->grab_geobox.x; int new_right = server->grab_geobox.x + server->grab_geobox.width; int new_top = server->grab_geobox.y; int new_bottom = server->grab_geobox.y + server->grab_geobox.height; if (server->resize_edges & WLR_EDGE_TOP) { new_top = border_y; if (new_top >= new_bottom) { new_top = new_bottom - 1; } } else if (server->resize_edges & WLR_EDGE_BOTTOM) { new_bottom = border_y; if (new_bottom <= new_top) { new_bottom = new_top + 1; } } if (server->resize_edges & WLR_EDGE_LEFT) { new_left = border_x; if (new_left >= new_right) { new_left = new_right - 1; } } else if (server->resize_edges & WLR_EDGE_RIGHT) { new_right = border_x; if (new_right <= new_left) { new_right = new_left + 1; } } struct wlr_box *geo_box = &toplevel->xdg_toplevel->base->geometry; wlr_scene_node_set_position(&toplevel->scene_tree->node, new_left - geo_box->x, new_top - geo_box->y); int new_width = new_right - new_left; int new_height = new_bottom - new_top; wlr_xdg_toplevel_set_size(toplevel->xdg_toplevel, new_width, new_height); } static void process_cursor_motion(struct tinywl_server *server, uint32_t time) { /* If the mode is non-passthrough, delegate to those functions. */ if (server->cursor_mode == TINYWL_CURSOR_MOVE) { process_cursor_move(server, time); return; } else if (server->cursor_mode == TINYWL_CURSOR_RESIZE) { process_cursor_resize(server, time); return; } /* Otherwise, find the toplevel under the pointer and send the event along. */ double sx, sy; struct wlr_seat *seat = server->seat; struct wlr_surface *surface = NULL; struct tinywl_toplevel *toplevel = desktop_toplevel_at(server, server->cursor->x, server->cursor->y, &surface, &sx, &sy); if (!toplevel) { /* If there's no toplevel under the cursor, set the cursor image to a * default. This is what makes the cursor image appear when you move it * around the screen, not over any toplevels. */ wlr_cursor_set_xcursor(server->cursor, server->cursor_mgr, "default"); } if (surface) { /* * Send pointer enter and motion events. * * The enter event gives the surface "pointer focus", which is distinct * from keyboard focus. You get pointer focus by moving the pointer over * a window. * * Note that wlroots will avoid sending duplicate enter/motion events if * the surface has already has pointer focus or if the client is already * aware of the coordinates passed. */ wlr_seat_pointer_notify_enter(seat, surface, sx, sy); wlr_seat_pointer_notify_motion(seat, time, sx, sy); } else { /* Clear pointer focus so future button events and such are not sent to * the last client to have the cursor over it. */ wlr_seat_pointer_clear_focus(seat); } } static void server_cursor_motion(struct wl_listener *listener, void *data) { /* This event is forwarded by the cursor when a pointer emits a _relative_ * pointer motion event (i.e. a delta) */ struct tinywl_server *server = wl_container_of(listener, server, cursor_motion); struct wlr_pointer_motion_event *event = data; /* The cursor doesn't move unless we tell it to. The cursor automatically * handles constraining the motion to the output layout, as well as any * special configuration applied for the specific input device which * generated the event. You can pass NULL for the device if you want to move * the cursor around without any input. */ wlr_cursor_move(server->cursor, &event->pointer->base, event->delta_x, event->delta_y); process_cursor_motion(server, event->time_msec); } static void server_cursor_motion_absolute( struct wl_listener *listener, void *data) { /* This event is forwarded by the cursor when a pointer emits an _absolute_ * motion event, from 0..1 on each axis. This happens, for example, when * wlroots is running under a Wayland window rather than KMS+DRM, and you * move the mouse over the window. You could enter the window from any edge, * so we have to warp the mouse there. There is also some hardware which * emits these events. */ struct tinywl_server *server = wl_container_of(listener, server, cursor_motion_absolute); struct wlr_pointer_motion_absolute_event *event = data; wlr_cursor_warp_absolute(server->cursor, &event->pointer->base, event->x, event->y); process_cursor_motion(server, event->time_msec); } static void server_cursor_button(struct wl_listener *listener, void *data) { /* This event is forwarded by the cursor when a pointer emits a button * event. */ struct tinywl_server *server = wl_container_of(listener, server, cursor_button); struct wlr_pointer_button_event *event = data; /* Notify the client with pointer focus that a button press has occurred */ wlr_seat_pointer_notify_button(server->seat, event->time_msec, event->button, event->state); double sx, sy; struct wlr_surface *surface = NULL; struct tinywl_toplevel *toplevel = desktop_toplevel_at(server, server->cursor->x, server->cursor->y, &surface, &sx, &sy); if (event->state == WL_POINTER_BUTTON_STATE_RELEASED) { /* If you released any buttons, we exit interactive move/resize mode. */ reset_cursor_mode(server); } else { /* Focus that client if the button was _pressed_ */ focus_toplevel(toplevel, surface); } } static void server_cursor_axis(struct wl_listener *listener, void *data) { /* This event is forwarded by the cursor when a pointer emits an axis event, * for example when you move the scroll wheel. */ struct tinywl_server *server = wl_container_of(listener, server, cursor_axis); struct wlr_pointer_axis_event *event = data; /* Notify the client with pointer focus of the axis event. */ wlr_seat_pointer_notify_axis(server->seat, event->time_msec, event->orientation, event->delta, event->delta_discrete, event->source, event->relative_direction); } static void server_cursor_frame(struct wl_listener *listener, void *data) { /* This event is forwarded by the cursor when a pointer emits an frame * event. Frame events are sent after regular pointer events to group * multiple events together. For instance, two axis events may happen at the * same time, in which case a frame event won't be sent in between. */ struct tinywl_server *server = wl_container_of(listener, server, cursor_frame); /* Notify the client with pointer focus of the frame event. */ wlr_seat_pointer_notify_frame(server->seat); } static void output_frame(struct wl_listener *listener, void *data) { /* This function is called every time an output is ready to display a frame, * generally at the output's refresh rate (e.g. 60Hz). */ struct tinywl_output *output = wl_container_of(listener, output, frame); struct wlr_scene *scene = output->server->scene; struct wlr_scene_output *scene_output = wlr_scene_get_scene_output( scene, output->wlr_output); /* Render the scene if needed and commit the output */ wlr_scene_output_commit(scene_output, NULL); struct timespec now; clock_gettime(CLOCK_MONOTONIC, &now); wlr_scene_output_send_frame_done(scene_output, &now); } static void output_request_state(struct wl_listener *listener, void *data) { /* This function is called when the backend requests a new state for * the output. For example, Wayland and X11 backends request a new mode * when the output window is resized. */ struct tinywl_output *output = wl_container_of(listener, output, request_state); const struct wlr_output_event_request_state *event = data; wlr_output_commit_state(output->wlr_output, event->state); } static void output_destroy(struct wl_listener *listener, void *data) { struct tinywl_output *output = wl_container_of(listener, output, destroy); wl_list_remove(&output->frame.link); wl_list_remove(&output->request_state.link); wl_list_remove(&output->destroy.link); wl_list_remove(&output->link); free(output); } static void server_new_output(struct wl_listener *listener, void *data) { /* This event is raised by the backend when a new output (aka a display or * monitor) becomes available. */ struct tinywl_server *server = wl_container_of(listener, server, new_output); struct wlr_output *wlr_output = data; /* Configures the output created by the backend to use our allocator * and our renderer. Must be done once, before commiting the output */ wlr_output_init_render(wlr_output, server->allocator, server->renderer); /* The output may be disabled, switch it on. */ struct wlr_output_state state; wlr_output_state_init(&state); wlr_output_state_set_enabled(&state, true); /* Some backends don't have modes. DRM+KMS does, and we need to set a mode * before we can use the output. The mode is a tuple of (width, height, * refresh rate), and each monitor supports only a specific set of modes. We * just pick the monitor's preferred mode, a more sophisticated compositor * would let the user configure it. */ struct wlr_output_mode *mode = wlr_output_preferred_mode(wlr_output); if (mode != NULL) { wlr_output_state_set_mode(&state, mode); } /* Atomically applies the new output state. */ wlr_output_commit_state(wlr_output, &state); wlr_output_state_finish(&state); /* Allocates and configures our state for this output */ struct tinywl_output *output = calloc(1, sizeof(*output)); output->wlr_output = wlr_output; output->server = server; /* Sets up a listener for the frame event. */ output->frame.notify = output_frame; wl_signal_add(&wlr_output->events.frame, &output->frame); /* Sets up a listener for the state request event. */ output->request_state.notify = output_request_state; wl_signal_add(&wlr_output->events.request_state, &output->request_state); /* Sets up a listener for the destroy event. */ output->destroy.notify = output_destroy; wl_signal_add(&wlr_output->events.destroy, &output->destroy); wl_list_insert(&server->outputs, &output->link); /* Adds this to the output layout. The add_auto function arranges outputs * from left-to-right in the order they appear. A more sophisticated * compositor would let the user configure the arrangement of outputs in the * layout. * * The output layout utility automatically adds a wl_output global to the * display, which Wayland clients can see to find out information about the * output (such as DPI, scale factor, manufacturer, etc). */ struct wlr_output_layout_output *l_output = wlr_output_layout_add_auto(server->output_layout, wlr_output); struct wlr_scene_output *scene_output = wlr_scene_output_create(server->scene, wlr_output); wlr_scene_output_layout_add_output(server->scene_layout, l_output, scene_output); } static void xdg_toplevel_map(struct wl_listener *listener, void *data) { /* Called when the surface is mapped, or ready to display on-screen. */ struct tinywl_toplevel *toplevel = wl_container_of(listener, toplevel, map); wl_list_insert(&toplevel->server->toplevels, &toplevel->link); focus_toplevel(toplevel, toplevel->xdg_toplevel->base->surface); } static void xdg_toplevel_unmap(struct wl_listener *listener, void *data) { /* Called when the surface is unmapped, and should no longer be shown. */ struct tinywl_toplevel *toplevel = wl_container_of(listener, toplevel, unmap); /* Reset the cursor mode if the grabbed toplevel was unmapped. */ if (toplevel == toplevel->server->grabbed_toplevel) { reset_cursor_mode(toplevel->server); } wl_list_remove(&toplevel->link); } static void xdg_toplevel_commit(struct wl_listener *listener, void *data) { /* Called when a new surface state is committed. */ struct tinywl_toplevel *toplevel = wl_container_of(listener, toplevel, commit); if (toplevel->xdg_toplevel->base->initial_commit) { /* When an xdg_surface performs an initial commit, the compositor must * reply with a configure so the client can map the surface. tinywl * configures the xdg_toplevel with 0,0 size to let the client pick the * dimensions itself. */ wlr_xdg_toplevel_set_size(toplevel->xdg_toplevel, 0, 0); } } static void xdg_toplevel_destroy(struct wl_listener *listener, void *data) { /* Called when the xdg_toplevel is destroyed. */ struct tinywl_toplevel *toplevel = wl_container_of(listener, toplevel, destroy); wl_list_remove(&toplevel->map.link); wl_list_remove(&toplevel->unmap.link); wl_list_remove(&toplevel->commit.link); wl_list_remove(&toplevel->destroy.link); wl_list_remove(&toplevel->request_move.link); wl_list_remove(&toplevel->request_resize.link); wl_list_remove(&toplevel->request_maximize.link); wl_list_remove(&toplevel->request_fullscreen.link); free(toplevel); } static void begin_interactive(struct tinywl_toplevel *toplevel, enum tinywl_cursor_mode mode, uint32_t edges) { /* This function sets up an interactive move or resize operation, where the * compositor stops propegating pointer events to clients and instead * consumes them itself, to move or resize windows. */ struct tinywl_server *server = toplevel->server; struct wlr_surface *focused_surface = server->seat->pointer_state.focused_surface; if (toplevel->xdg_toplevel->base->surface != wlr_surface_get_root_surface(focused_surface)) { /* Deny move/resize requests from unfocused clients. */ return; } server->grabbed_toplevel = toplevel; server->cursor_mode = mode; if (mode == TINYWL_CURSOR_MOVE) { server->grab_x = server->cursor->x - toplevel->scene_tree->node.x; server->grab_y = server->cursor->y - toplevel->scene_tree->node.y; } else { struct wlr_box *geo_box = &toplevel->xdg_toplevel->base->geometry; double border_x = (toplevel->scene_tree->node.x + geo_box->x) + ((edges & WLR_EDGE_RIGHT) ? geo_box->width : 0); double border_y = (toplevel->scene_tree->node.y + geo_box->y) + ((edges & WLR_EDGE_BOTTOM) ? geo_box->height : 0); server->grab_x = server->cursor->x - border_x; server->grab_y = server->cursor->y - border_y; server->grab_geobox = *geo_box; server->grab_geobox.x += toplevel->scene_tree->node.x; server->grab_geobox.y += toplevel->scene_tree->node.y; server->resize_edges = edges; } } static void xdg_toplevel_request_move( struct wl_listener *listener, void *data) { /* This event is raised when a client would like to begin an interactive * move, typically because the user clicked on their client-side * decorations. Note that a more sophisticated compositor should check the * provided serial against a list of button press serials sent to this * client, to prevent the client from requesting this whenever they want. */ struct tinywl_toplevel *toplevel = wl_container_of(listener, toplevel, request_move); begin_interactive(toplevel, TINYWL_CURSOR_MOVE, 0); } static void xdg_toplevel_request_resize( struct wl_listener *listener, void *data) { /* This event is raised when a client would like to begin an interactive * resize, typically because the user clicked on their client-side * decorations. Note that a more sophisticated compositor should check the * provided serial against a list of button press serials sent to this * client, to prevent the client from requesting this whenever they want. */ struct wlr_xdg_toplevel_resize_event *event = data; struct tinywl_toplevel *toplevel = wl_container_of(listener, toplevel, request_resize); begin_interactive(toplevel, TINYWL_CURSOR_RESIZE, event->edges); } static void xdg_toplevel_request_maximize( struct wl_listener *listener, void *data) { /* This event is raised when a client would like to maximize itself, * typically because the user clicked on the maximize button on client-side * decorations. tinywl doesn't support maximization, but to conform to * xdg-shell protocol we still must send a configure. * wlr_xdg_surface_schedule_configure() is used to send an empty reply. * However, if the request was sent before an initial commit, we don't do * anything and let the client finish the initial surface setup. */ struct tinywl_toplevel *toplevel = wl_container_of(listener, toplevel, request_maximize); if (toplevel->xdg_toplevel->base->initialized) { wlr_xdg_surface_schedule_configure(toplevel->xdg_toplevel->base); } } static void xdg_toplevel_request_fullscreen( struct wl_listener *listener, void *data) { /* Just as with request_maximize, we must send a configure here. */ struct tinywl_toplevel *toplevel = wl_container_of(listener, toplevel, request_fullscreen); if (toplevel->xdg_toplevel->base->initialized) { wlr_xdg_surface_schedule_configure(toplevel->xdg_toplevel->base); } } static void server_new_xdg_toplevel(struct wl_listener *listener, void *data) { /* This event is raised when a client creates a new toplevel (application window). */ struct tinywl_server *server = wl_container_of(listener, server, new_xdg_toplevel); struct wlr_xdg_toplevel *xdg_toplevel = data; /* Allocate a tinywl_toplevel for this surface */ struct tinywl_toplevel *toplevel = calloc(1, sizeof(*toplevel)); toplevel->server = server; toplevel->xdg_toplevel = xdg_toplevel; toplevel->scene_tree = wlr_scene_xdg_surface_create(&toplevel->server->scene->tree, xdg_toplevel->base); toplevel->scene_tree->node.data = toplevel; xdg_toplevel->base->data = toplevel->scene_tree; /* Listen to the various events it can emit */ toplevel->map.notify = xdg_toplevel_map; wl_signal_add(&xdg_toplevel->base->surface->events.map, &toplevel->map); toplevel->unmap.notify = xdg_toplevel_unmap; wl_signal_add(&xdg_toplevel->base->surface->events.unmap, &toplevel->unmap); toplevel->commit.notify = xdg_toplevel_commit; wl_signal_add(&xdg_toplevel->base->surface->events.commit, &toplevel->commit); toplevel->destroy.notify = xdg_toplevel_destroy; wl_signal_add(&xdg_toplevel->events.destroy, &toplevel->destroy); /* cotd */ toplevel->request_move.notify = xdg_toplevel_request_move; wl_signal_add(&xdg_toplevel->events.request_move, &toplevel->request_move); toplevel->request_resize.notify = xdg_toplevel_request_resize; wl_signal_add(&xdg_toplevel->events.request_resize, &toplevel->request_resize); toplevel->request_maximize.notify = xdg_toplevel_request_maximize; wl_signal_add(&xdg_toplevel->events.request_maximize, &toplevel->request_maximize); toplevel->request_fullscreen.notify = xdg_toplevel_request_fullscreen; wl_signal_add(&xdg_toplevel->events.request_fullscreen, &toplevel->request_fullscreen); } static void xdg_popup_commit(struct wl_listener *listener, void *data) { /* Called when a new surface state is committed. */ struct tinywl_popup *popup = wl_container_of(listener, popup, commit); if (popup->xdg_popup->base->initial_commit) { /* When an xdg_surface performs an initial commit, the compositor must * reply with a configure so the client can map the surface. * tinywl sends an empty configure. A more sophisticated compositor * might change an xdg_popup's geometry to ensure it's not positioned * off-screen, for example. */ wlr_xdg_surface_schedule_configure(popup->xdg_popup->base); } } static void xdg_popup_destroy(struct wl_listener *listener, void *data) { /* Called when the xdg_popup is destroyed. */ struct tinywl_popup *popup = wl_container_of(listener, popup, destroy); wl_list_remove(&popup->commit.link); wl_list_remove(&popup->destroy.link); free(popup); } static void server_new_xdg_popup(struct wl_listener *listener, void *data) { /* This event is raised when a client creates a new popup. */ struct wlr_xdg_popup *xdg_popup = data; struct tinywl_popup *popup = calloc(1, sizeof(*popup)); popup->xdg_popup = xdg_popup; /* We must add xdg popups to the scene graph so they get rendered. The * wlroots scene graph provides a helper for this, but to use it we must * provide the proper parent scene node of the xdg popup. To enable this, * we always set the user data field of xdg_surfaces to the corresponding * scene node. */ struct wlr_xdg_surface *parent = wlr_xdg_surface_try_from_wlr_surface(xdg_popup->parent); assert(parent != NULL); struct wlr_scene_tree *parent_tree = parent->data; xdg_popup->base->data = wlr_scene_xdg_surface_create(parent_tree, xdg_popup->base); popup->commit.notify = xdg_popup_commit; wl_signal_add(&xdg_popup->base->surface->events.commit, &popup->commit); popup->destroy.notify = xdg_popup_destroy; wl_signal_add(&xdg_popup->events.destroy, &popup->destroy); } int main(int argc, char *argv[]) { wlr_log_init(WLR_DEBUG, NULL); char *startup_cmd = NULL; int c; while ((c = getopt(argc, argv, "s:h")) != -1) { switch (c) { case 's': startup_cmd = optarg; break; default: printf("Usage: %s [-s startup command]\n", argv[0]); return 0; } } if (optind < argc) { printf("Usage: %s [-s startup command]\n", argv[0]); return 0; } struct tinywl_server server = {0}; /* The Wayland display is managed by libwayland. It handles accepting * clients from the Unix socket, manging Wayland globals, and so on. */ server.wl_display = wl_display_create(); /* The backend is a wlroots feature which abstracts the underlying input and * output hardware. The autocreate option will choose the most suitable * backend based on the current environment, such as opening an X11 window * if an X11 server is running. */ server.backend = wlr_backend_autocreate(wl_display_get_event_loop(server.wl_display), NULL); if (server.backend == NULL) { wlr_log(WLR_ERROR, "failed to create wlr_backend"); return 1; } /* Autocreates a renderer, either Pixman, GLES2 or Vulkan for us. The user * can also specify a renderer using the WLR_RENDERER env var. * The renderer is responsible for defining the various pixel formats it * supports for shared memory, this configures that for clients. */ server.renderer = wlr_renderer_autocreate(server.backend); if (server.renderer == NULL) { wlr_log(WLR_ERROR, "failed to create wlr_renderer"); return 1; } wlr_renderer_init_wl_display(server.renderer, server.wl_display); /* Autocreates an allocator for us. * The allocator is the bridge between the renderer and the backend. It * handles the buffer creation, allowing wlroots to render onto the * screen */ server.allocator = wlr_allocator_autocreate(server.backend, server.renderer); if (server.allocator == NULL) { wlr_log(WLR_ERROR, "failed to create wlr_allocator"); return 1; } /* This creates some hands-off wlroots interfaces. The compositor is * necessary for clients to allocate surfaces, the subcompositor allows to * assign the role of subsurfaces to surfaces and the data device manager * handles the clipboard. Each of these wlroots interfaces has room for you * to dig your fingers in and play with their behavior if you want. Note that * the clients cannot set the selection directly without compositor approval, * see the handling of the request_set_selection event below.*/ wlr_compositor_create(server.wl_display, 5, server.renderer); wlr_subcompositor_create(server.wl_display); wlr_data_device_manager_create(server.wl_display); /* Creates an output layout, which a wlroots utility for working with an * arrangement of screens in a physical layout. */ server.output_layout = wlr_output_layout_create(server.wl_display); /* Configure a listener to be notified when new outputs are available on the * backend. */ wl_list_init(&server.outputs); server.new_output.notify = server_new_output; wl_signal_add(&server.backend->events.new_output, &server.new_output); /* Create a scene graph. This is a wlroots abstraction that handles all * rendering and damage tracking. All the compositor author needs to do * is add things that should be rendered to the scene graph at the proper * positions and then call wlr_scene_output_commit() to render a frame if * necessary. */ server.scene = wlr_scene_create(); server.scene_layout = wlr_scene_attach_output_layout(server.scene, server.output_layout); /* Set up xdg-shell version 3. The xdg-shell is a Wayland protocol which is * used for application windows. For more detail on shells, refer to * https://drewdevault.com/2018/07/29/Wayland-shells.html. */ wl_list_init(&server.toplevels); server.xdg_shell = wlr_xdg_shell_create(server.wl_display, 3); server.new_xdg_toplevel.notify = server_new_xdg_toplevel; wl_signal_add(&server.xdg_shell->events.new_toplevel, &server.new_xdg_toplevel); server.new_xdg_popup.notify = server_new_xdg_popup; wl_signal_add(&server.xdg_shell->events.new_popup, &server.new_xdg_popup); /* * Creates a cursor, which is a wlroots utility for tracking the cursor * image shown on screen. */ server.cursor = wlr_cursor_create(); wlr_cursor_attach_output_layout(server.cursor, server.output_layout); /* Creates an xcursor manager, another wlroots utility which loads up * Xcursor themes to source cursor images from and makes sure that cursor * images are available at all scale factors on the screen (necessary for * HiDPI support). */ server.cursor_mgr = wlr_xcursor_manager_create(NULL, 24); /* * wlr_cursor *only* displays an image on screen. It does not move around * when the pointer moves. However, we can attach input devices to it, and * it will generate aggregate events for all of them. In these events, we * can choose how we want to process them, forwarding them to clients and * moving the cursor around. More detail on this process is described in * https://drewdevault.com/2018/07/17/Input-handling-in-wlroots.html. * * And more comments are sprinkled throughout the notify functions above. */ server.cursor_mode = TINYWL_CURSOR_PASSTHROUGH; server.cursor_motion.notify = server_cursor_motion; wl_signal_add(&server.cursor->events.motion, &server.cursor_motion); server.cursor_motion_absolute.notify = server_cursor_motion_absolute; wl_signal_add(&server.cursor->events.motion_absolute, &server.cursor_motion_absolute); server.cursor_button.notify = server_cursor_button; wl_signal_add(&server.cursor->events.button, &server.cursor_button); server.cursor_axis.notify = server_cursor_axis; wl_signal_add(&server.cursor->events.axis, &server.cursor_axis); server.cursor_frame.notify = server_cursor_frame; wl_signal_add(&server.cursor->events.frame, &server.cursor_frame); /* * Configures a seat, which is a single "seat" at which a user sits and * operates the computer. This conceptually includes up to one keyboard, * pointer, touch, and drawing tablet device. We also rig up a listener to * let us know when new input devices are available on the backend. */ wl_list_init(&server.keyboards); server.new_input.notify = server_new_input; wl_signal_add(&server.backend->events.new_input, &server.new_input); server.seat = wlr_seat_create(server.wl_display, "seat0"); server.request_cursor.notify = seat_request_cursor; wl_signal_add(&server.seat->events.request_set_cursor, &server.request_cursor); server.request_set_selection.notify = seat_request_set_selection; wl_signal_add(&server.seat->events.request_set_selection, &server.request_set_selection); /* Add a Unix socket to the Wayland display. */ const char *socket = wl_display_add_socket_auto(server.wl_display); if (!socket) { wlr_backend_destroy(server.backend); return 1; } /* Start the backend. This will enumerate outputs and inputs, become the DRM * master, etc */ if (!wlr_backend_start(server.backend)) { wlr_backend_destroy(server.backend); wl_display_destroy(server.wl_display); return 1; } /* Set the WAYLAND_DISPLAY environment variable to our socket and run the * startup command if requested. */ setenv("WAYLAND_DISPLAY", socket, true); if (startup_cmd) { if (fork() == 0) { execl("/bin/sh", "/bin/sh", "-c", startup_cmd, (void *)NULL); } } /* Run the Wayland event loop. This does not return until you exit the * compositor. Starting the backend rigged up all of the necessary event * loop configuration to listen to libinput events, DRM events, generate * frame events at the refresh rate, and so on. */ wlr_log(WLR_INFO, "Running Wayland compositor on WAYLAND_DISPLAY=%s", socket); wl_display_run(server.wl_display); /* Once wl_display_run returns, we destroy all clients then shut down the * server. */ wl_display_destroy_clients(server.wl_display); wlr_scene_node_destroy(&server.scene->tree.node); wlr_xcursor_manager_destroy(server.cursor_mgr); wlr_cursor_destroy(server.cursor); wlr_allocator_destroy(server.allocator); wlr_renderer_destroy(server.renderer); wlr_backend_destroy(server.backend); wl_display_destroy(server.wl_display); return 0; }